@@ -176,7 +176,9 @@ def test_without_shuffle(func_name, func_opts):
176176 assert df3 .columns_value .should_be_monotonic is True
177177 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
178178 assert df3 .index_value .should_be_monotonic is True
179- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
179+ pd .testing .assert_index_equal (
180+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
181+ )
180182 assert df3 .index_value .key != df1 .index_value .key
181183 assert df3 .index_value .key != df2 .index_value .key
182184 assert df3 .shape [1 ] == 11 # columns is recorded, so we can get it
@@ -190,7 +192,9 @@ def test_without_shuffle(func_name, func_opts):
190192 assert df3 .columns_value .should_be_monotonic is True
191193 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
192194 assert df3 .index_value .should_be_monotonic is True
193- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
195+ pd .testing .assert_index_equal (
196+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
197+ )
194198 assert df3 .index_value .key != df1 .index_value .key
195199 assert df3 .index_value .key != df2 .index_value .key
196200 assert df3 .shape [1 ] == 11 # columns is recorded, so we can get it
@@ -408,7 +412,9 @@ def test_dataframe_and_series_with_shuffle(func_name, func_opts):
408412 # test df2's index and columns
409413 assert df2 .shape == (df1 .shape [0 ], np .nan )
410414 assert df2 .index_value .key == df1 .index_value .key
411- pd .testing .assert_index_equal (df2 .columns_value .to_pandas (), pd .Int64Index ([]))
415+ pd .testing .assert_index_equal (
416+ df2 .columns_value .to_pandas (), pd .Index ([], dtype = np .int64 )
417+ )
412418 assert df2 .columns_value .key != df1 .columns_value .key
413419 assert df2 .columns_value .should_be_monotonic is True
414420
@@ -602,7 +608,9 @@ def test_series_and_series_with_shuffle(func_name, func_opts):
602608 assert s3 .shape == (np .nan ,)
603609 assert s3 .index_value .key != s1 .index_value .key
604610 assert s3 .index_value .key != s2 .index_value .key
605- pd .testing .assert_index_equal (s3 .index_value .to_pandas (), pd .Int64Index ([]))
611+ pd .testing .assert_index_equal (
612+ s3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
613+ )
606614 assert s3 .index_value .should_be_monotonic is True
607615
608616 s1 , s2 , s3 = tile (s1 , s2 , s3 )
@@ -726,7 +734,9 @@ def test_with_one_shuffle(func_name, func_opts):
726734 assert df3 .columns_value .should_be_monotonic is True
727735 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
728736 assert df3 .index_value .should_be_monotonic is True
729- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
737+ pd .testing .assert_index_equal (
738+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
739+ )
730740 assert df3 .index_value .key != df1 .index_value .key
731741 assert df3 .index_value .key != df2 .index_value .key
732742 assert df3 .shape [1 ] == 12 # columns is recorded, so we can get it
@@ -858,7 +868,9 @@ def test_with_all_shuffle(func_name, func_opts):
858868 assert df3 .columns_value .should_be_monotonic is True
859869 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
860870 assert df3 .index_value .should_be_monotonic is True
861- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
871+ pd .testing .assert_index_equal (
872+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
873+ )
862874 assert df3 .index_value .key != df1 .index_value .key
863875 assert df3 .index_value .key != df2 .index_value .key
864876 assert df3 .shape [1 ] == 12 # columns is recorded, so we can get it
@@ -958,7 +970,9 @@ def test_with_all_shuffle(func_name, func_opts):
958970 assert df6 .columns_value .should_be_monotonic is True
959971 assert isinstance (df6 .index_value .value , IndexValue .Int64Index )
960972 assert df6 .index_value .should_be_monotonic is True
961- pd .testing .assert_index_equal (df6 .index_value .to_pandas (), pd .Int64Index ([]))
973+ pd .testing .assert_index_equal (
974+ df6 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
975+ )
962976 assert df6 .index_value .key != df4 .index_value .key
963977 assert df6 .index_value .key != df5 .index_value .key
964978 assert df6 .shape [1 ] == 20 # columns is recorded, so we can get it
@@ -1063,7 +1077,9 @@ def test_without_shuffle_and_with_one_chunk(func_name, func_opts):
10631077 assert df3 .columns_value .should_be_monotonic is True
10641078 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
10651079 assert df3 .index_value .should_be_monotonic is True
1066- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
1080+ pd .testing .assert_index_equal (
1081+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
1082+ )
10671083 assert df3 .index_value .key != df1 .index_value .key
10681084 assert df3 .index_value .key != df2 .index_value .key
10691085 assert df3 .shape [1 ] == 12 # columns is recorded, so we can get it
@@ -1175,7 +1191,9 @@ def test_both_one_chunk(func_name, func_opts):
11751191 assert df3 .columns_value .should_be_monotonic is True
11761192 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
11771193 assert df3 .index_value .should_be_monotonic is True
1178- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
1194+ pd .testing .assert_index_equal (
1195+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
1196+ )
11791197 assert df3 .index_value .key != df1 .index_value .key
11801198 assert df3 .index_value .key != df2 .index_value .key
11811199 assert df3 .shape [1 ] == 12 # columns is recorded, so we can get it
@@ -1219,7 +1237,9 @@ def test_with_shuffle_and_one_chunk(func_name, func_opts):
12191237 assert df3 .columns_value .should_be_monotonic is True
12201238 assert isinstance (df3 .index_value .value , IndexValue .Int64Index )
12211239 assert df3 .index_value .should_be_monotonic is True
1222- pd .testing .assert_index_equal (df3 .index_value .to_pandas (), pd .Int64Index ([]))
1240+ pd .testing .assert_index_equal (
1241+ df3 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
1242+ )
12231243 assert df3 .index_value .key != df1 .index_value .key
12241244 assert df3 .index_value .key != df2 .index_value .key
12251245 assert df3 .shape [1 ] == 12 # columns is recorded, so we can get it
@@ -1312,7 +1332,9 @@ def test_on_same_dataframe(func_name, func_opts):
13121332 assert df2 .columns_value .should_be_monotonic is False
13131333 assert isinstance (df2 .index_value .value , IndexValue .Int64Index )
13141334 assert df2 .index_value .should_be_monotonic is False
1315- pd .testing .assert_index_equal (df2 .index_value .to_pandas (), pd .Int64Index ([]))
1335+ pd .testing .assert_index_equal (
1336+ df2 .index_value .to_pandas (), pd .Index ([], dtype = np .int64 )
1337+ )
13161338 assert df2 .index_value .key == df .index_value .key
13171339 assert df2 .columns_value .key == df .columns_value .key
13181340 assert df2 .shape [1 ] == 10
0 commit comments