|
5 | 5 | <titleabbrev>Semantic text</titleabbrev> |
6 | 6 | ++++ |
7 | 7 |
|
8 | | -beta[] |
9 | | - |
10 | 8 | The `semantic_text` field type automatically generates embeddings for text content using an inference endpoint. |
11 | 9 | Long passages are <<auto-text-chunking, automatically chunked>> to smaller sections to enable the processing of larger corpuses of text. |
12 | 10 |
|
13 | 11 | The `semantic_text` field type specifies an inference endpoint identifier that will be used to generate embeddings. |
14 | 12 | You can create the inference endpoint by using the <<put-inference-api>>. |
15 | | -This field type and the <<query-dsl-semantic-query,`semantic` query>> type make it simpler to perform semantic search on your data. |
| 13 | +This field type and the <<query-dsl-semantic-query,`semantic` query>> type make it simpler to perform semantic search on your data. |
16 | 14 | The `semantic_text` field type may also be queried with <<query-dsl-match-query, match>>, <<query-dsl-sparse-vector-query, sparse_vector>> or <<query-dsl-knn-query, knn>> queries. |
17 | 15 |
|
18 | 16 | If you don’t specify an inference endpoint, the `inference_id` field defaults to `.elser-2-elasticsearch`, a preconfigured endpoint for the elasticsearch service. |
@@ -193,8 +191,8 @@ types and create an ingest pipeline with an |
193 | 191 | <<inference-processor, {infer} processor>> to generate the embeddings. |
194 | 192 | <<semantic-search-inference,This tutorial>> walks you through the process. In |
195 | 193 | these cases - when you use `sparse_vector` or `dense_vector` field types instead |
196 | | -of the `semantic_text` field type to customize indexing - using the |
197 | | -<<query-dsl-semantic-query,`semantic_query`>> is not supported for querying the |
| 194 | +of the `semantic_text` field type to customize indexing - using the |
| 195 | +<<query-dsl-semantic-query,`semantic_query`>> is not supported for querying the |
198 | 196 | field data. |
199 | 197 |
|
200 | 198 |
|
|
0 commit comments