|
14 | 14 | + lemma `partition_disjoint_bigfcup` |
15 | 15 | - in `lebesgue_measure.v`: |
16 | 16 | + lemma `measurable_indicP` |
17 | | -- in `constructive_ereal.v`: |
18 | | - + notation `\prod_( i <- r | P ) F` for extended real numbers and its variants |
19 | 17 |
|
20 | 18 | - in `numfun.v`: |
21 | 19 | + defintions `funrpos`, `funrneg` with notations `^\+` and `^\-` |
|
31 | 29 | notations `.-mapping`, `.-mapping.-measurable` |
32 | 30 |
|
33 | 31 | - in `lebesgue_measure.v`: |
34 | | - + lemma `measurable_indicP` |
35 | 32 | + lemmas `measurable_funrpos`, `measurable_funrneg` |
36 | 33 |
|
37 | 34 | - in `lebesgue_integral.v`: |
|
46 | 43 | - in `probability.v`: |
47 | 44 | + lemma `expectation_def` |
48 | 45 | + notation `'M_` |
49 | | -- in `probability.v`: |
| 46 | + |
| 47 | +- new file `independence.v`: |
50 | 48 | + lemma `expectationM_ge0` |
51 | 49 | + definition `independent_events` |
52 | 50 | + definition `mutual_independence` |
|
72 | 70 | - in `lebesgue_integrale.v` |
73 | 71 | + change implicits of `measurable_funP` |
74 | 72 |
|
75 | | - |
76 | | -- in file `normedtype.v`, |
77 | | - changed `completely_regular_space` to depend on uniform separators |
78 | | - which removes the dependency on `R`. The old formulation can be |
79 | | - recovered easily with `uniform_separatorP`. |
80 | | - |
81 | | -- moved from `Rstruct.v` to `Rstruct_topology.v` |
82 | | - + lemmas `continuity_pt_nbhs`, `continuity_pt_cvg`, |
83 | | - `continuity_ptE`, `continuity_pt_cvg'`, `continuity_pt_dnbhs` |
84 | | - and `nbhs_pt_comp` |
85 | | - |
86 | | -- moved from `real_interval.v` to `normedtype.v` |
87 | | - + lemmas `set_itvK`, `RhullT`, `RhullK`, `set_itv_setT`, |
88 | | - `Rhull_smallest`, `le_Rhull`, `neitv_Rhull`, `Rhull_involutive`, |
89 | | - `disj_itv_Rhull` |
90 | | -- in `topology.v`: |
91 | | - + lemmas `subspace_pm_ball_center`, `subspace_pm_ball_sym`, |
92 | | - `subspace_pm_ball_triangle`, `subspace_pm_entourage` turned |
93 | | - into local `Let`'s |
94 | | - |
95 | | -- in `lebesgue_integral.v`: |
96 | | - + structure `SimpleFun` now inside a module `HBSimple` |
97 | | - + structure `NonNegSimpleFun` now inside a module `HBNNSimple` |
98 | | - + lemma `cst_nnfun_subproof` has now a different statement |
99 | | - + lemma `indic_nnfun_subproof` has now a different statement |
100 | | -- in `mathcomp_extra.v`: |
101 | | - + definition `idempotent_fun` |
102 | | - |
103 | | -- in `topology_structure.v`: |
104 | | - + definitions `regopen`, `regclosed` |
105 | | - + lemmas `closure_setC`, `interiorC`, `closureU`, `interiorU`, |
106 | | - `closureEbigcap`, `interiorEbigcup`, |
107 | | - `closure_open_regclosed`, `interior_closed_regopen`, |
108 | | - `closure_interior_idem`, `interior_closure_idem` |
109 | | - |
110 | | -- in file `topology_structure.v`, |
111 | | - + mixin `isContinuous`, type `continuousType`, structure `Continuous` |
112 | | - + new lemma `continuousEP`. |
113 | | - + new definition `mkcts`. |
114 | | - |
115 | | -- in file `subspace_topology.v`, |
116 | | - + new lemmas `continuous_subspace_setT`, `nbhs_prodX_subspace_inE`, and |
117 | | - `continuous_subspace_prodP`. |
118 | | - + type `continuousFunType`, HB structure `ContinuousFun` |
119 | | - |
120 | | -- in file `subtype_topology.v`, |
121 | | - + new lemmas `subspace_subtypeP`, `subspace_sigL_continuousP`, |
122 | | - `subspace_valL_continuousP'`, `subspace_valL_continuousP`, `sigT_of_setXK`, |
123 | | - `setX_of_sigTK`, `setX_of_sigT_continuous`, and `sigT_of_setX_continuous`. |
124 | | - |
125 | | -- in `lebesgue_integrale.v` |
126 | | - + change implicits of `measurable_funP` |
127 | | - |
128 | | -### Changed |
129 | | - |
130 | 73 | ### Renamed |
131 | 74 |
|
132 | 75 | - in `lebesgue_measure.v`: |
|
151 | 94 |
|
152 | 95 | - in `probability.v`: |
153 | 96 | + `integral_distribution` -> `ge0_integral_distribution` |
154 | | - + `expectationM` -> `expectationMl` |
155 | 97 |
|
156 | 98 | ### Generalized |
157 | 99 |
|
|
177 | 119 |
|
178 | 120 | ### Removed |
179 | 121 |
|
180 | | -- in `topology_structure.v`: |
181 | | - + lemma `closureC` |
182 | | - |
183 | | -- in file `lebesgue_integral.v`: |
184 | | - + lemma `approximation` |
185 | | - |
186 | | -### Removed |
187 | | - |
188 | | -- in `lebesgue_integral.v`: |
189 | | - + definition `cst_mfun` |
190 | | - + lemma `mfun_cst` |
191 | | - |
192 | | -- in `cardinality.v`: |
193 | | - + lemma `cst_fimfun_subproof` |
194 | | - |
195 | | -- in `lebesgue_integral.v`: |
196 | | - + lemma `cst_mfun_subproof` (use lemma `measurable_cst` instead) |
197 | | - + lemma `cst_nnfun_subproof` (turned into a `Let`) |
198 | | - + lemma `indic_mfun_subproof` (use lemma `measurable_fun_indic` instead) |
199 | | - |
200 | 122 | - in `lebesgue_integral.v`: |
201 | 123 | + lemma `measurable_indic` (was uselessly specializing `measurable_fun_indic` (now `measurable_indic`) from `lebesgue_measure.v`) |
202 | 124 | + notation `measurable_fun_indic` (deprecation since 0.6.3) |
|
0 commit comments