@@ -806,23 +806,22 @@ End disjoint_itv_numDomain.
806806
807807Section open_endpoints.
808808Context {d} {T : porderType d}.
809+ Implicit Types (i : interval T).
809810
810811Definition is_open_itv (A : set T) := exists ab, A = `]ab.1, ab.2[%classic.
811812
812813Definition open_itv_cover (A : set T) := [set F : nat -> set T |
813- (forall i, is_open_itv (F i)) /\ A `<=` \bigcup_k (F k)].
814+ (forall i : nat , is_open_itv (F i)) /\ A `<=` \bigcup_k (F k)].
814815
815- Definition itv_is_open_unbounded (i : interval T) : bool :=
816+ Definition itv_is_open_unbounded i : bool :=
816817 match i with
817818 | `]-oo, _[ | `]_, +oo[ | `]-oo, +oo[ => true
818819 | _ => false
819820 end .
820821
821- Definition itv_is_oo (i : interval T) : bool :=
822- if i is `]_, _[ then true else false.
822+ Definition itv_is_oo i : bool := if i is `]_, _[ then true else false.
823823
824- Definition itv_open_ends (i : interval T) : bool :=
825- (itv_is_open_unbounded i) || (itv_is_oo i).
824+ Definition itv_open_ends i : bool := itv_is_open_unbounded i || itv_is_oo i.
826825
827826Lemma itv_open_ends_rside l b (t : T) :
828827 itv_open_ends (Interval l (BSide b t)) -> b = true.
@@ -840,38 +839,33 @@ Lemma itv_open_ends_linfty l b :
840839 itv_open_ends (Interval (BInfty T b) l) -> b = true.
841840Proof . by case: b => //; move: l => [[]?|[]] // []. Qed .
842841
843- Lemma is_open_itv_itv_is_bd_openP (i : interval T) :
844- itv_is_oo i -> is_open_itv [set` i].
845- Proof .
846- by case: i=> [] [[]l|[]] // [[]r|[]] // ?; exists (l,r).
847- Qed .
842+ Lemma is_open_itv_itv_is_bd_openP i : itv_is_oo i -> is_open_itv [set` i].
843+ Proof . by case: i=> [] [[]l|[]] // [[]r|[]] // ?; exists (l,r). Qed .
848844
849845End open_endpoints.
850846
851847Section closed_endpoints.
852848Context {d} {T : porderType d}.
849+ Implicit Types (i : interval T).
853850
854- Definition itv_is_closed_unbounded (i : interval T) : bool :=
851+ Definition itv_is_closed_unbounded i : bool :=
855852 match i with
856853 | `[_, +oo[ | `]-oo, _[ | `]-oo, +oo[ => true
857854 | _ => false
858855 end .
859856
860- Definition itv_is_cc (i : interval T) : bool :=
861- if i is `[_, _] then true else false.
857+ Definition itv_is_cc i : bool := if i is `[_, _] then true else false.
862858
863- Definition itv_closed_ends (i : interval T) : bool :=
864- (itv_is_closed_unbounded i) || (itv_is_cc i).
859+ Definition itv_closed_ends i : bool := itv_is_closed_unbounded i || itv_is_cc i.
865860
866861End closed_endpoints.
867862
863+ Arguments itv_open_ends {d T} !i /.
868864Lemma itv_open_endsI {d} {T : orderType d} (i j : interval T) :
869865 itv_open_ends i -> itv_open_ends j -> itv_open_ends (i `&` j)%O.
870866Proof .
871- move: i => [][[]a|[]] [[]b|[]]//=;
872- move: j => [][[]x|[]] [[]y|[]]//=;
873- by rewrite /itv_open_ends/= ?orbF ?andbT -?negb_or ?le_total//=;
874- try ((by left)||(by right)).
867+ by move: i => [][[]a|[]] [[]b|[]]//=; move: j => [][[]x|[]] [[]y|[]]//=;
868+ rewrite /itv_open_ends/= ?orbF ?andbT -?negb_or ?le_total//=.
875869Qed .
876870
877871Lemma itv_setU {d} {T : orderType d} (i j : interval T) :
0 commit comments