Skip to content

Commit bc9bb6d

Browse files
committed
address review comments
1 parent 3cc0cb6 commit bc9bb6d

File tree

2 files changed

+16
-22
lines changed

2 files changed

+16
-22
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@
1212

1313
### Renamed
1414
- in set_interval.v
15-
+ `itv_is_ray` -> `itv_is_open_unbounded`,
16-
+ `itv_is_bd_open` -> `itv_is_oo`,
15+
+ `itv_is_ray` -> `itv_is_open_unbounded`
16+
+ `itv_is_bd_open` -> `itv_is_oo`
1717

1818
### Generalized
1919

classical/set_interval.v

Lines changed: 14 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -806,23 +806,22 @@ End disjoint_itv_numDomain.
806806

807807
Section open_endpoints.
808808
Context {d} {T : porderType d}.
809+
Implicit Types (i : interval T).
809810

810811
Definition is_open_itv (A : set T) := exists ab, A = `]ab.1, ab.2[%classic.
811812

812813
Definition open_itv_cover (A : set T) := [set F : nat -> set T |
813-
(forall i, is_open_itv (F i)) /\ A `<=` \bigcup_k (F k)].
814+
(forall i : nat , is_open_itv (F i)) /\ A `<=` \bigcup_k (F k)].
814815

815-
Definition itv_is_open_unbounded (i : interval T) : bool :=
816+
Definition itv_is_open_unbounded i : bool :=
816817
match i with
817818
| `]-oo, _[ | `]_, +oo[ | `]-oo, +oo[ => true
818819
| _ => false
819820
end.
820821

821-
Definition itv_is_oo (i : interval T) : bool :=
822-
if i is `]_, _[ then true else false.
822+
Definition itv_is_oo i : bool := if i is `]_, _[ then true else false.
823823

824-
Definition itv_open_ends (i : interval T) : bool :=
825-
(itv_is_open_unbounded i) || (itv_is_oo i).
824+
Definition itv_open_ends i : bool := itv_is_open_unbounded i || itv_is_oo i.
826825

827826
Lemma itv_open_ends_rside l b (t : T) :
828827
itv_open_ends (Interval l (BSide b t)) -> b = true.
@@ -840,38 +839,33 @@ Lemma itv_open_ends_linfty l b :
840839
itv_open_ends (Interval (BInfty T b) l) -> b = true.
841840
Proof. by case: b => //; move: l => [[]?|[]] // []. Qed.
842841

843-
Lemma is_open_itv_itv_is_bd_openP (i : interval T) :
844-
itv_is_oo i -> is_open_itv [set` i].
845-
Proof.
846-
by case: i=> [] [[]l|[]] // [[]r|[]] // ?; exists (l,r).
847-
Qed.
842+
Lemma is_open_itv_itv_is_bd_openP i : itv_is_oo i -> is_open_itv [set` i].
843+
Proof. by case: i=> [] [[]l|[]] // [[]r|[]] // ?; exists (l,r). Qed.
848844

849845
End open_endpoints.
850846

851847
Section closed_endpoints.
852848
Context {d} {T : porderType d}.
849+
Implicit Types (i : interval T).
853850

854-
Definition itv_is_closed_unbounded (i : interval T) : bool :=
851+
Definition itv_is_closed_unbounded i : bool :=
855852
match i with
856853
| `[_, +oo[ | `]-oo, _[ | `]-oo, +oo[ => true
857854
| _ => false
858855
end.
859856

860-
Definition itv_is_cc (i : interval T) : bool :=
861-
if i is `[_, _] then true else false.
857+
Definition itv_is_cc i : bool := if i is `[_, _] then true else false.
862858

863-
Definition itv_closed_ends (i : interval T) : bool :=
864-
(itv_is_closed_unbounded i) || (itv_is_cc i).
859+
Definition itv_closed_ends i : bool := itv_is_closed_unbounded i || itv_is_cc i.
865860

866861
End closed_endpoints.
867862

863+
Arguments itv_open_ends {d T} !i /.
868864
Lemma itv_open_endsI {d} {T : orderType d} (i j : interval T) :
869865
itv_open_ends i -> itv_open_ends j -> itv_open_ends (i `&` j)%O.
870866
Proof.
871-
move: i => [][[]a|[]] [[]b|[]]//=;
872-
move: j => [][[]x|[]] [[]y|[]]//=;
873-
by rewrite /itv_open_ends/= ?orbF ?andbT -?negb_or ?le_total//=;
874-
try ((by left)||(by right)).
867+
by move: i => [][[]a|[]] [[]b|[]]//=; move: j => [][[]x|[]] [[]y|[]]//=;
868+
rewrite /itv_open_ends/= ?orbF ?andbT -?negb_or ?le_total//=.
875869
Qed.
876870

877871
Lemma itv_setU {d} {T : orderType d} (i j : interval T) :

0 commit comments

Comments
 (0)