Skip to content

Commit d381d8c

Browse files
committed
use Urysohn in perfectly_normal_space01_normal
1 parent 7c2e9ae commit d381d8c

File tree

1 file changed

+7
-27
lines changed

1 file changed

+7
-27
lines changed

theories/borel_hierarchy.v

Lines changed: 7 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -131,11 +131,6 @@ Definition perfectly_normal_space' (x : R) :=
131131
forall E : set T, open E ->
132132
exists f : T -> R, continuous f /\ E = f @^-1` ~`[set x].
133133

134-
(*Definition perfectly_normal_space01 :=
135-
forall E F : set T, closed E -> closed F -> [disjoint E & F] ->
136-
exists f : T -> R, continuous f /\ E = f @^-1` [set 0] /\ F = f @^-1` [set 1]
137-
/\ f @` [set: T] = `[0, 1]%classic.
138-
*)
139134
Definition perfectly_normal_space01 :=
140135
forall E F : set T, closed E -> closed F -> [disjoint E & F] ->
141136
exists f : T -> R,
@@ -148,28 +143,13 @@ Definition perfectly_normal_space_Gdelta :=
148143
Lemma perfectly_normal_space01_normal :
149144
perfectly_normal_space01 -> normal_space T.
150145
Proof.
151-
move=> pns01 A cA B /set_nbhsP[C] [oC AC CB].
152-
case: (pns01 A (~` C) cA).
153-
- by rewrite closedC.
154-
- exact/disj_setPCl.
155-
move=> f [/continuousP /= cf] [f0] [f1] f01.
156-
exists (f @^-1` `]-oo, 1/2]).
157-
apply/set_nbhsP.
158-
exists (f @^-1` `]-oo, 1/2[).
159-
split => //.
160-
- exact: cf.
161-
- by rewrite f0 => x /= ->; rewrite in_itv /=.
162-
- by apply: preimage_subset => x /=; rewrite !in_itv /=; apply: ltW.
163-
apply: subset_trans CB.
164-
have<-:= proj1 (closure_id _).
165-
have<-:= (setCK C).
166-
rewrite f1 preimage_setC.
167-
apply: preimage_subset => x /=; rewrite in_itv /=.
168-
apply: contraTnot => ->.
169-
by rewrite -ltNge ltr_pdivrMr // mul1r ltr1n.
170-
have/continuousP /continuous_closedP:= cf.
171-
apply.
172-
exact: lray_closed.
146+
move=> pns01.
147+
rewrite (@normal_separatorP R).
148+
move=> A B cA cB /eqP AB.
149+
apply/uniform_separatorP.
150+
have[f [] cf Af Bf f01] := pns01 _ _ cA cB AB.
151+
exists f.
152+
by split => //; rewrite (Af, Bf); exact:image_preimage_subset.
173153
Qed.
174154

175155
Lemma EFin_series (f : R^nat) : EFin \o series f = eseries (EFin \o f).

0 commit comments

Comments
 (0)