@@ -2666,7 +2666,7 @@ Lemma fct_sumE (I T : Type) (M : nmodType) r (P : {pred I}) (f : I -> T -> M) :
26662666 \sum_(i <- r | P i) f i = fun x => \sum_(i <- r | P i) f i x.
26672667Proof . by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed .
26682668
2669- Lemma fct_prodE (I : Type ) ( T : pointedType ) (M : pzRingType) r (P : {pred I})
2669+ Lemma fct_prodE (I T : Type ) (M : pzRingType) r (P : {pred I})
26702670 (f : I -> T -> M) :
26712671 \prod_(i <- r | P i) f i = fun x => \prod_(i <- r | P i) f i x.
26722672Proof . by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed .
@@ -2689,7 +2689,7 @@ Lemma sumrfctE (T : Type) (K : nmodType) (s : seq (T -> K)) :
26892689 \sum_(f <- s) f = (fun x => \sum_(f <- s) f x).
26902690Proof . exact: fct_sumE. Qed .
26912691
2692- Lemma prodrfctE (T : pointedType ) (K : pzRingType) (s : seq (T -> K)) :
2692+ Lemma prodrfctE (T : Type ) (K : pzRingType) (s : seq (T -> K)) :
26932693 \prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
26942694Proof . exact: fct_prodE. Qed .
26952695
@@ -2700,7 +2700,7 @@ Proof. by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed.
27002700Lemma opprfctE (T : Type) (K : zmodType) (f : T -> K) : - f = (fun x => - f x).
27012701Proof . by []. Qed .
27022702
2703- Lemma mulrfctE (T : pointedType ) (K : pzRingType) (f g : T -> K) :
2703+ Lemma mulrfctE (T : Type ) (K : pzRingType) (f g : T -> K) :
27042704 f * g = (fun x => f x * g x).
27052705Proof . by []. Qed .
27062706
@@ -2712,7 +2712,7 @@ Proof. by []. Qed.
27122712Lemma cstE (T T': Type) (x : T) : cst x = fun _: T' => x.
27132713Proof . by []. Qed .
27142714
2715- Lemma exprfctE (T : pointedType ) (K : pzRingType) (f : T -> K) n :
2715+ Lemma exprfctE (T : Type ) (K : pzRingType) (f : T -> K) n :
27162716 f ^+ n = (fun x => f x ^+ n).
27172717Proof . by elim: n => [|n h]; rewrite funeqE=> ?; rewrite ?expr0 ?exprS ?h. Qed .
27182718
0 commit comments