Skip to content

Commit eb0d035

Browse files
authored
slightly generalize fct_prodR (#1795)
1 parent 47625e9 commit eb0d035

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

classical/functions.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2666,7 +2666,7 @@ Lemma fct_sumE (I T : Type) (M : nmodType) r (P : {pred I}) (f : I -> T -> M) :
26662666
\sum_(i <- r | P i) f i = fun x => \sum_(i <- r | P i) f i x.
26672667
Proof. by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed.
26682668

2669-
Lemma fct_prodE (I : Type) (T : pointedType) (M : pzRingType) r (P : {pred I})
2669+
Lemma fct_prodE (I T : Type) (M : pzRingType) r (P : {pred I})
26702670
(f : I -> T -> M) :
26712671
\prod_(i <- r | P i) f i = fun x => \prod_(i <- r | P i) f i x.
26722672
Proof. by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed.
@@ -2689,7 +2689,7 @@ Lemma sumrfctE (T : Type) (K : nmodType) (s : seq (T -> K)) :
26892689
\sum_(f <- s) f = (fun x => \sum_(f <- s) f x).
26902690
Proof. exact: fct_sumE. Qed.
26912691

2692-
Lemma prodrfctE (T : pointedType) (K : pzRingType) (s : seq (T -> K)) :
2692+
Lemma prodrfctE (T : Type) (K : pzRingType) (s : seq (T -> K)) :
26932693
\prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
26942694
Proof. exact: fct_prodE. Qed.
26952695

@@ -2700,7 +2700,7 @@ Proof. by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed.
27002700
Lemma opprfctE (T : Type) (K : zmodType) (f : T -> K) : - f = (fun x => - f x).
27012701
Proof. by []. Qed.
27022702

2703-
Lemma mulrfctE (T : pointedType) (K : pzRingType) (f g : T -> K) :
2703+
Lemma mulrfctE (T : Type) (K : pzRingType) (f g : T -> K) :
27042704
f * g = (fun x => f x * g x).
27052705
Proof. by []. Qed.
27062706

@@ -2712,7 +2712,7 @@ Proof. by []. Qed.
27122712
Lemma cstE (T T': Type) (x : T) : cst x = fun _: T' => x.
27132713
Proof. by []. Qed.
27142714

2715-
Lemma exprfctE (T : pointedType) (K : pzRingType) (f : T -> K) n :
2715+
Lemma exprfctE (T : Type) (K : pzRingType) (f : T -> K) n :
27162716
f ^+ n = (fun x => f x ^+ n).
27172717
Proof. by elim: n => [|n h]; rewrite funeqE=> ?; rewrite ?expr0 ?exprS ?h. Qed.
27182718

0 commit comments

Comments
 (0)