@@ -16,9 +16,9 @@ HB.mixin Record AddComoid_of_TYPE A := {
1616 addrC : commutative add;
1717 add0r : left_id zero add;
1818}.
19- HB.structure Definition AddComoid := { A of AddComoid_of_TYPE.axioms A }.
19+ HB.structure Definition AddComoid := { A of AddComoid_of_TYPE A }.
2020
21- HB.mixin Record AddAG_of_AddComoid A of AddComoid.axioms A := {
21+ HB.mixin Record AddAG_of_AddComoid A of AddComoid A := {
2222 opp : A -> A;
2323 addNr : left_inverse zero opp add;
2424}.
@@ -32,20 +32,20 @@ HB.factory Record AddAG_of_TYPE A := {
3232 addNr : left_inverse zero opp add;
3333}.
3434
35- HB.builders Context A (a : AddAG_of_TYPE.axioms A).
35+ HB.builders Context A (a : AddAG_of_TYPE A).
3636
37- Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Axioms A
37+ Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A
3838 zero_a add_a addrA_a addrC_a add0r_a.
3939 HB.instance A to_AddComoid_of_TYPE.
4040
41- Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Axioms A _ addNr_a.
41+ Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Build A _ addNr_a.
4242 HB.instance A to_AddAG_of_AddComoid.
4343HB.end .
44- HB.structure Definition AddAG := { A of AddAG_of_TYPE.axioms A }.
44+ HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.
4545
4646(* Begin change *)
4747
48- HB.mixin Record SemiRing_of_AddComoid A of AddComoid.axioms A := {
48+ HB.mixin Record SemiRing_of_AddComoid A of AddComoid A := {
4949 one : A;
5050 mul : A -> A -> A;
5151 mulrA : associative mul;
@@ -56,9 +56,9 @@ HB.mixin Record SemiRing_of_AddComoid A of AddComoid.axioms A := {
5656 mul0r : left_zero zero mul;
5757 mulr0 : right_zero zero mul;
5858}.
59- HB.structure Definition SemiRing := { A of AddComoid.axioms A & SemiRing_of_AddComoid.axioms A }.
59+ HB.structure Definition SemiRing := { A of AddComoid A & SemiRing_of_AddComoid A }.
6060
61- HB.factory Record Ring_of_AddAG A of AddAG.axioms A := {
61+ HB.factory Record Ring_of_AddAG A of AddAG A := {
6262 one : A;
6363 mul : A -> A -> A;
6464 mulrA : associative mul;
@@ -68,7 +68,7 @@ HB.factory Record Ring_of_AddAG A of AddAG.axioms A := {
6868 mulrDr : right_distributive mul add;
6969}.
7070
71- HB.builders Context A (a : Ring_of_AddAG.axioms A).
71+ HB.builders Context A (a : Ring_of_AddAG A).
7272
7373 Fact mul0r : left_zero zero mul_a.
7474 Proof .
@@ -84,15 +84,15 @@ HB.builders Context A (a : Ring_of_AddAG.axioms A).
8484 by rewrite -mulrDr_a add0r addrC addNr.
8585 Qed .
8686
87- Definition to_SemiRing_of_AddComoid := SemiRing_of_AddComoid.Axioms A
87+ Definition to_SemiRing_of_AddComoid := SemiRing_of_AddComoid.Build A
8888 _ mul_a mulrA_a mulr1_a mul1r_a
8989 mulrDl_a mulrDr_a mul0r mulr0.
9090 HB.instance A to_SemiRing_of_AddComoid.
9191
9292HB.end .
9393
9494(* End change *)
95- HB.factory Record Ring_of_AddComoid A of AddComoid.axioms A := {
95+ HB.factory Record Ring_of_AddComoid A of AddComoid A := {
9696 opp : A -> A;
9797 one : A;
9898 mul : A -> A -> A;
@@ -104,12 +104,12 @@ HB.factory Record Ring_of_AddComoid A of AddComoid.axioms A := {
104104 mulrDr : right_distributive mul add;
105105}.
106106
107- HB.builders Context A (a : Ring_of_AddComoid.axioms A).
107+ HB.builders Context A (a : Ring_of_AddComoid A).
108108
109- Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Axioms A _ addNr_a.
109+ Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Build A _ addNr_a.
110110 HB.instance A to_AddAG_of_AddComoid.
111111
112- Definition to_Ring_of_AddAG := Ring_of_AddAG.Axioms A
112+ Definition to_Ring_of_AddAG := Ring_of_AddAG.Build A
113113 _ _ mulrA_a mul1r_a mulr1_a mulrDl_a mulrDr_a.
114114 HB.instance A to_Ring_of_AddAG.
115115
@@ -134,18 +134,18 @@ HB.factory Record Ring_of_TYPE A := {
134134 mulrDr : right_distributive mul add;
135135}.
136136
137- HB.builders Context A (a : Ring_of_TYPE.axioms A).
137+ HB.builders Context A (a : Ring_of_TYPE A).
138138
139- Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Axioms A
139+ Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A
140140 zero_a add_a addrA_a addrC_a add0r_a.
141141 HB.instance A to_AddComoid_of_TYPE.
142142
143- Definition to_Ring_of_AddComoid := Ring_of_AddComoid.Axioms A
143+ Definition to_Ring_of_AddComoid := Ring_of_AddComoid.Build A
144144 _ _ _ addNr_a mulrA_a mul1r_a mulr1_a mulrDl_a mulrDr_a.
145145 HB.instance A to_Ring_of_AddComoid.
146146HB.end .
147147
148- HB.structure Definition Ring := { A of Ring_of_TYPE.axioms A }.
148+ HB.structure Definition Ring := { A of Ring_of_TYPE A }.
149149
150150(* Notations *)
151151
0 commit comments