@@ -101,8 +101,6 @@ Set Universe Checking.
101101
102102(*** CATEGORIES WITH PULLBACKS *)
103103
104- (* Local Open Scope type_scope. *)
105-
106104(* category with all prepullbacks *)
107105(* Ideally span is in fact expanded and the final mixin has
108106a pb : forall A B, cospan A B -> C
@@ -590,7 +588,8 @@ Lemma jm_pbsquare_universal {C: cat} (A B T P0 P1 P2 : C)
590588 (e: P0 = P2) :
591589 sigma m: P1 ~> P2, f = m \;;_e p1 /\ g = m \;;_e p2.
592590 unfold jmcomp.
593- dependent destruction e.
591+ destruct e.
592+ (* dependent destruction e. *)
594593 eapply pbsquare_universal; eauto .
595594Qed .
596595
@@ -778,7 +777,10 @@ Program Definition ipairC {C : pbcat} {C0 : C} {x0 x1 x2 x3 : iHom C0}
778777 subst prj21 prj22.
779778
780779 (* surprisingly, this does not work with pbsquare_is_pulback_sym *)
781- (* rewrite <- pbsquare_is_pullback_sym. *)
780+ (* rewrite - pbsquare_is_pullback_sym.
781+ Set Printing All.
782+ *)
783+
782784 rewrite pbsquare_is_pullback.
783785 inversion HeqCsp2; subst.
784786 subst Sp2.
@@ -960,10 +962,11 @@ assert (forall (e2: ((c2 *_C0 c3) :> C) = Pb23),
960962 j33L \; (j12R \; src2) = m23 \;;_e2 j23L \; src2) as M23_E1.
961963{ intros e2.
962964 unfold jmcomp.
963- dependent destruction e2.
965+ destruct e2.
966+ (* dependent destruction e2. *)
964967 rewrite compoA.
965968 rewrite m23_E.
966- unfold jmcomp.
969+ unfold jmcomp.
967970 dependent destruction E23.
968971 rewrite compoA; auto.
969972}
@@ -973,7 +976,8 @@ assert (forall (e3: ((c2 *_C0 c3) :> C) = Pb23),
973976{ intros e3.
974977 specialize (M23_E1 E23).
975978 unfold jmcomp in M23_E1.
976- dependent destruction E23.
979+ destruct E23.
980+ (* dependent destruction E23. *)
977981 unfold jmcomp.
978982 dependent destruction e3.
979983 setoid_rewrite <- compoA.
@@ -999,7 +1003,7 @@ assert (pbsquare j15L j15R tgt1 src23) as pbsq15.
9991003}
10001004
10011005assert ((j33L \; j12L) \; tgt1 = m23 \; src23) as sqM23.
1002- { specialize (M23_E2 E23).
1006+ { specialize (M23_E2 E23).
10031007 dependent destruction E23.
10041008 exact M23_E2.
10051009}
@@ -1019,12 +1023,13 @@ assert (
10191023 eapply (@pbsquare_universal C _ _ _ _ _ _ _ _ _ (j33L \; j12L) m23).
10201024 exact pbsq15.
10211025 exact sqM23.
1022- }
1023-
1026+ }
10241027destruct (X E33) as [mm R].
10251028exact mm.
10261029Qed .
10271030
1031+ Print Assumptions iprodCAsc.
1032+
10281033(* An internal precategory is an internal category with two operators
10291034 that must be src and tgt preserving, i.e. iHom morphisms: identity
10301035 : C0 -> C1 (corresponding to horizontal 1-morphism identity in
@@ -1903,6 +1908,9 @@ Obligation 1.
19031908refine (@existT (D1hom h0 k0) _ hh0 (@existT (D1hom h1 k1) _ hh1 k)).
19041909Defined .
19051910
1911+ (*HB.builders Context (T : obj cat) (f : IsInternalCat cat T). *)
1912+ (* Context (f : doublecat). *)
1913+
19061914(* hcomp (hm, hu) = prj1 (hm, hu) = hm
19071915 hcomp (hu, hm) = prj2 (hu, hm) = hm
19081916 (hm1 * hm2) * hm3 ~> hm1 * (hm2 * hm3)
@@ -1921,12 +1929,6 @@ HB.mixin Record IsDCat_UA T of CFunctor T := {
19211929 (@HO T (@hhom T) a0 a3 hh1)
19221930}.
19231931 *)
1924- (*
1925- Class pip (Y: Type) := {}.
1926- Class pip2 (T: Type) := {}.
1927-
1928- Instance pipO (T1 T2: Type) : pip T1 -> pip T2 -> pip2 (T1 + T2)%type.
1929- *)
19301932
19311933(******************************************************************** *)
19321934
@@ -2182,3 +2184,5 @@ Program Definition pb_cat (A B: cat) (H: cospan A B) : cat.
21822184 destruct c as [a1 a2 a3].
21832185 econstructor.
21842186 *)
2187+
2188+
0 commit comments