Skip to content

Commit 9719bc8

Browse files
Fix tutorial .html link (#580)
1 parent 254ec8e commit 9719bc8

File tree

6 files changed

+28
-28
lines changed

6 files changed

+28
-28
lines changed

tutorials/README.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -9,39 +9,39 @@ The table below provides an overview of each tutorial. All tutorials are also av
99

1010
| Description | Tutorial |
1111
|---------------|-----------|
12-
Introductory Tutorial: A Beginner’s Guide to PINA|[[.ipynb](tutorial17/tutorial.ipynb),[.py](tutorial17/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial17/tutorial.html)]|
13-
How to build a `Problem` in PINA|[[.ipynb](tutorial16/tutorial.ipynb),[.py](tutorial16/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial16/tutorial.html)]|
14-
Introduction to Solver classes|[[.ipynb](tutorial18/tutorial.ipynb),[.py](tutorial18/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial18/tutorial.html)]|
15-
Introduction to `Trainer` class|[[.ipynb](tutorial11/tutorial.ipynb),[.py](tutorial11/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial11/tutorial.html)]|
16-
Data structure for SciML: `Tensor`, `LabelTensor`, `Data` and `Graph` |[[.ipynb](tutorial19/tutorial.ipynb),[.py](tutorial19/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial19/tutorial.html)]|
17-
Building geometries with `DomainInterface` class|[[.ipynb](tutorial6/tutorial.ipynb),[.py](tutorial6/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial6/tutorial.html)]|
18-
Introduction to PINA `Equation` class|[[.ipynb](tutorial12/tutorial.ipynb),[.py](tutorial12/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial12/tutorial.html)]|
12+
Introductory Tutorial: A Beginner’s Guide to PINA|[[.ipynb](tutorial17/tutorial.ipynb),[.py](tutorial17/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial17/tutorial.html)]|
13+
How to build a `Problem` in PINA|[[.ipynb](tutorial16/tutorial.ipynb),[.py](tutorial16/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial16/tutorial.html)]|
14+
Introduction to Solver classes|[[.ipynb](tutorial18/tutorial.ipynb),[.py](tutorial18/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial18/tutorial.html)]|
15+
Introduction to `Trainer` class|[[.ipynb](tutorial11/tutorial.ipynb),[.py](tutorial11/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial11/tutorial.html)]|
16+
Data structure for SciML: `Tensor`, `LabelTensor`, `Data` and `Graph` |[[.ipynb](tutorial19/tutorial.ipynb),[.py](tutorial19/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial19/tutorial.html)]|
17+
Building geometries with `DomainInterface` class|[[.ipynb](tutorial6/tutorial.ipynb),[.py](tutorial6/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial6/tutorial.html)]|
18+
Introduction to PINA `Equation` class|[[.ipynb](tutorial12/tutorial.ipynb),[.py](tutorial12/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial12/tutorial.html)]|
1919

2020

2121
## Physics Informed Neural Networks
2222
| Description | Tutorial |
2323
|---------------|-----------|
24-
Introductory Tutorial: Physics Informed Neural Networks with PINA |[[.ipynb](tutorial1/tutorial.ipynb),[.py](tutorial1/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial1/tutorial.html)]|
25-
Enhancing PINNs with Extra Features to solve the Poisson Problem |[[.ipynb](tutorial2/tutorial.ipynb),[.py](tutorial2/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial2/tutorial.html)]|
26-
Applying Hard Constraints in PINNs to solve the Wave Problem |[[.ipynb](tutorial3/tutorial.ipynb),[.py](tutorial3/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial3/tutorial.html)]|
27-
Applying Periodic Boundary Conditions in PINNs to solve the Helmotz Problem |[[.ipynb](tutorial9/tutorial.ipynb),[.py](tutorial9/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial9/tutorial.html)]|
28-
Inverse Problem Solving with Physics-Informed Neural Network |[[.ipynb](tutorial7/tutorial.ipynb),[.py](tutorial7/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial7/tutorial.html)]|
29-
Learning Multiscale PDEs Using Fourier Feature Networks|[[.ipynb](tutorial13/tutorial.ipynb),[.py](tutorial13/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial13/tutorial.html)]|
30-
Learning Bifurcating PDE Solutions with Physics-Informed Deep Ensembles|[[.ipynb](tutorial14/tutorial.ipynb),[.py](tutorial14/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial14/tutorial.html)]|
24+
Introductory Tutorial: Physics Informed Neural Networks with PINA |[[.ipynb](tutorial1/tutorial.ipynb),[.py](tutorial1/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial1/tutorial.html)]|
25+
Enhancing PINNs with Extra Features to solve the Poisson Problem |[[.ipynb](tutorial2/tutorial.ipynb),[.py](tutorial2/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial2/tutorial.html)]|
26+
Applying Hard Constraints in PINNs to solve the Wave Problem |[[.ipynb](tutorial3/tutorial.ipynb),[.py](tutorial3/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial3/tutorial.html)]|
27+
Applying Periodic Boundary Conditions in PINNs to solve the Helmholtz Problem |[[.ipynb](tutorial9/tutorial.ipynb),[.py](tutorial9/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial9/tutorial.html)]|
28+
Inverse Problem Solving with Physics-Informed Neural Network |[[.ipynb](tutorial7/tutorial.ipynb),[.py](tutorial7/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial7/tutorial.html)]|
29+
Learning Multiscale PDEs Using Fourier Feature Networks|[[.ipynb](tutorial13/tutorial.ipynb),[.py](tutorial13/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial13/tutorial.html)]|
30+
Learning Bifurcating PDE Solutions with Physics-Informed Deep Ensembles|[[.ipynb](tutorial14/tutorial.ipynb),[.py](tutorial14/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial14/tutorial.html)]|
3131

3232

3333
## Neural Operator Learning
3434
| Description | Tutorial |
3535
|---------------|-----------|
36-
Introductory Tutorial: Neural Operator Learning with PINA |[[.ipynb](tutorial21/tutorial.ipynb),[.py](tutorial21/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial21/tutorial.html)]|
37-
Modeling 2D Darcy Flow with the Fourier Neural Operator |[[.ipynb](tutorial5/tutorial.ipynb),[.py](tutorial5/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial5/tutorial.html)]|
38-
Solving the Kuramoto–Sivashinsky Equation with Averaging Neural Operator |[[.ipynb](tutorial10/tutorial.ipynb),[.py](tutorial10/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial10/tutorial.html)]|
36+
Introductory Tutorial: Neural Operator Learning with PINA |[[.ipynb](tutorial21/tutorial.ipynb),[.py](tutorial21/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial21/tutorial.html)]|
37+
Modeling 2D Darcy Flow with the Fourier Neural Operator |[[.ipynb](tutorial5/tutorial.ipynb),[.py](tutorial5/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial5/tutorial.html)]|
38+
Solving the Kuramoto–Sivashinsky Equation with Averaging Neural Operator |[[.ipynb](tutorial10/tutorial.ipynb),[.py](tutorial10/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial10/tutorial.html)]|
3939

4040
## Supervised Learning
4141
| Description | Tutorial |
4242
|---------------|-----------|
43-
Introductory Tutorial: Supervised Learning with PINA |[[.ipynb](tutorial20/tutorial.ipynb),[.py](tutorial20/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial20/tutorial.html)]|
44-
Chemical Properties Prediction with Graph Neural Networks |[[.ipynb](tutorial15/tutorial.ipynb),[.py](tutorial15/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial15/tutorial.html)]|
45-
Unstructured Convolutional Autoencoders with Continuous Convolution |[[.ipynb](tutorial4/tutorial.ipynb),[.py](tutorial4/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial4/tutorial.html)]|
46-
Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics| [[.ipynb](tutorial8/tutorial.ipynb),[.py](tutorial8/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial8/tutorial.html)]|
43+
Introductory Tutorial: Supervised Learning with PINA |[[.ipynb](tutorial20/tutorial.ipynb),[.py](tutorial20/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial20/tutorial.html)]|
44+
Chemical Properties Prediction with Graph Neural Networks |[[.ipynb](tutorial15/tutorial.ipynb),[.py](tutorial15/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial15/tutorial.html)]|
45+
Unstructured Convolutional Autoencoders with Continuous Convolution |[[.ipynb](tutorial4/tutorial.ipynb),[.py](tutorial4/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial4/tutorial.html)]|
46+
Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics| [[.ipynb](tutorial8/tutorial.ipynb),[.py](tutorial8/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial8/tutorial.html)]|
4747

tutorials/tutorial11/tutorial.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -287,7 +287,7 @@
287287
"metadata": {},
288288
"source": [
289289
"<p align=\\\"center\\\">\n",
290-
"<img src=\"../static/logging.png\" alt=\\\"Logging API\\\" width=\\\"400\\\"/>\n",
290+
" <img src=\"http://raw.githubusercontent.com/mathLab/PINA/master/tutorials/static/logging.png\" alt=\\\"Logging API\\\" width=\\\"400\\\"/>\n",
291291
"</p>"
292292
]
293293
},

tutorials/tutorial14/tutorial.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@
5858
"This approach allows the ensemble to capture different perspectives of the problem, leading to more accurate and reliable predictions.\n",
5959
"\n",
6060
"<p align=\"center\">\n",
61-
" <img src=\"../static/deep_ensemble.png\" alt=\"PINA Workflow\" width=\"600\"/>\n",
61+
" <img src=\"http://raw.githubusercontent.com/mathLab/PINA/master/tutorials/static/deep_ensemble.png\" alt=\"Deep ensemble\" width=\"600\"/>\n",
6262
"</p>\n",
6363
"\n",
6464
"The image above illustrates a Deep Ensemble setup, where multiple models attempt to predict the text from an image. While individual models may make errors (e.g., predicting \"PONY\" instead of \"PINA\"), combining their outputs—such as taking the majority vote—often leads to the correct result. This ensemble effect improves reliability by mitigating the impact of individual model biases.\n",

tutorials/tutorial17/tutorial.ipynb

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,9 +11,10 @@
1111
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial17/tutorial.ipynb)\n",
1212
"\n",
1313
"<p align=\"left\">\n",
14-
" <img src=\"../static/pina_logo.png\" alt=\"PINA Logo\" width=\"90\"/>\n",
14+
" <img src=\"https://raw.githubusercontent.com/mathLab/PINA/master/readme/pina_logo.png\" alt=\"PINA logo\" width=\"90\"/>\n",
1515
"</p>\n",
1616
"\n",
17+
"\n",
1718
"Welcome to **PINA**!\n",
1819
"\n",
1920
"PINA [1] is an open-source Python library designed for **Scientific Machine Learning (SciML)** tasks, particularly involving:\n",
@@ -39,7 +40,7 @@
3940
"## The PINA Workflow \n",
4041
"\n",
4142
"<p align=\"center\">\n",
42-
" <img src=\"../static/pina_wokflow.png\" alt=\"PINA Workflow\" width=\"1000\"/>\n",
43+
" <img src=\"http://raw.githubusercontent.com/mathLab/PINA/master/tutorials/static/pina_wokflow.png\" alt=\"PINA Workflow\" width=\"1000\"/>\n",
4344
"</p>\n",
4445
"\n",
4546
"Solving a differential problem in **PINA** involves four main steps:\n",

tutorials/tutorial21/tutorial.ipynb

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -163,10 +163,9 @@
163163
"At their core, **Neural Operators** transform an input function $a$ into an output function $u$. The general structure of a Neural Operator consists of three key components:\n",
164164
"\n",
165165
"<p align=\"center\">\n",
166-
" <img src=\"../static/neural_operator.png\" alt=\"Neural Operators\" width=\"800\"/>\n",
166+
" <img src=\"http://raw.githubusercontent.com/mathLab/PINA/master/tutorials/static/neural_operator.png\" alt=\"Neural Operators\" width=\"800\"/>\n",
167167
"</p>\n",
168168
"\n",
169-
"\n",
170169
"1. **Encoder**: The encoder maps the input into a specific embedding space.\n",
171170
"\n",
172171
"2. **Processor**: The processor consists of multiple layers performing **function convolutions**, which is the core computational unit in a Neural Operator. \n",

tutorials/tutorial9/tutorial.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# Tutorial: Applying Periodic Boundary Conditions in PINNs to solve the Helmotz Problem\n",
7+
"# Tutorial: Applying Periodic Boundary Conditions in PINNs to solve the Helmholtz Problem\n",
88
"\n",
99
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial9/tutorial.ipynb)\n",
1010
"\n",

0 commit comments

Comments
 (0)