@@ -50,14 +50,14 @@ class AdaptiveSigmoid(AdaptiveActivationFunctionInterface):
5050 r"""
5151 Adaptive trainable :class:`~torch.nn.Sigmoid` activation function.
5252
53- Given the function
53+ Given the function
5454 :math:`\text{Sigmoid}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
5555 the adaptive function
5656 :math:`\text{Sigmoid}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
5757 is defined as:
5858
5959 .. math::
60- \text{Sigmoid}_{\text{adaptive}}({x})= \\
60+ \text{Sigmoid}_{\text{adaptive}}({x})=
6161 \alpha\,\text{Sigmoid}(\beta{x}+\gamma),
6262
6363 where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
@@ -344,15 +344,15 @@ class AdaptiveSoftmin(AdaptiveActivationFunctionInterface):
344344 r"""
345345 Adaptive trainable :class:`~torch.nn.Softmin` activation function.
346346
347- Given the function
347+ Given the function
348348 :math:`\text{Softmin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
349349 the adaptive function
350350 :math:`\text{Softmin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
351351 is defined as:
352352
353353 .. math::
354- \text{Softmin}_{\text{adaptive}}({x})= \\
355- \alpha\,\ text{Softmin}(\beta{x}+\gamma),
354+ \text{Softmin}_{\text{adaptive}}({x})=\alpha\,
355+ \text{Softmin}(\beta{x}+\gamma),
356356
357357 where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
358358 Softmin function is defined as:
@@ -387,15 +387,15 @@ class AdaptiveSoftmax(AdaptiveActivationFunctionInterface):
387387 r"""
388388 Adaptive trainable :class:`~torch.nn.Softmax` activation function.
389389
390- Given the function
390+ Given the function
391391 :math:`\text{Softmax}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
392392 the adaptive function
393393 :math:`\text{Softmax}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
394394 is defined as:
395395
396396 .. math::
397- \text{Softmax}_{\text{adaptive}}({x})= \\
398- \alpha\,\ text{Softmax}(\beta{x}+\gamma),
397+ \text{Softmax}_{\text{adaptive}}({x})=\alpha\,
398+ \text{Softmax}(\beta{x}+\gamma),
399399
400400 where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
401401 Softmax function is defined as:
0 commit comments