@@ -98,8 +98,8 @@ To perform DMD, simply begin by initializing a PyDMD module that implements your
9898from pydmd import DMD
9999from pydmd.plotter import plot_summary
100100
101- # Build an exact DMD model with 15 spatiotemporal modes.
102- dmd = DMD(svd_rank = 15 )
101+ # Build an exact DMD model with 12 spatiotemporal modes.
102+ dmd = DMD(svd_rank = 12 )
103103
104104# Fit the DMD model.
105105# X = (n, m) numpy array of time-varying snapshot data.
@@ -115,7 +115,7 @@ from pydmd import DMD
115115from pydmd.preprocessing import zero_mean_preprocessing
116116
117117# Build and fit an exact DMD model with data centering.
118- centered_dmd = zero_mean_preprocessing(DMD(svd_rank = 15 ))
118+ centered_dmd = zero_mean_preprocessing(DMD(svd_rank = 12 ))
119119centered_dmd.fit(X)
120120```
121121
@@ -124,9 +124,9 @@ Users may also build highly complex DMD models with PyDMD. Below is an example o
124124from pydmd import BOPDMD
125125
126126# Build a bagging, optimized DMD (BOP-DMD) model.
127- # For Optimized DMD (without bagging), use BOPDMD(svd_rank=15 , num_trials=0).
127+ # For Optimized DMD (without bagging), use BOPDMD(svd_rank=12 , num_trials=0).
128128bopdmd = BOPDMD(
129- svd_rank = 15 , # Rank of the DMD fit.
129+ svd_rank = 12 , # Rank of the DMD fit.
130130 num_trials = 100 , # Number of bagging trials to perform.
131131 trial_size = 0.5 , # Use 50% of the total number of snapshots per trial.
132132 eig_constraints = {" imag" , " conjugate_pairs" }, # Eigenvalues must be imaginary and conjugate pairs.
0 commit comments