Skip to content

Commit 2c585d0

Browse files
authored
Use consistent number of modes in quickstart
1 parent 101cbc1 commit 2c585d0

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -98,8 +98,8 @@ To perform DMD, simply begin by initializing a PyDMD module that implements your
9898
from pydmd import DMD
9999
from pydmd.plotter import plot_summary
100100

101-
# Build an exact DMD model with 15 spatiotemporal modes.
102-
dmd = DMD(svd_rank=15)
101+
# Build an exact DMD model with 12 spatiotemporal modes.
102+
dmd = DMD(svd_rank=12)
103103

104104
# Fit the DMD model.
105105
# X = (n, m) numpy array of time-varying snapshot data.
@@ -115,7 +115,7 @@ from pydmd import DMD
115115
from pydmd.preprocessing import zero_mean_preprocessing
116116

117117
# Build and fit an exact DMD model with data centering.
118-
centered_dmd = zero_mean_preprocessing(DMD(svd_rank=15))
118+
centered_dmd = zero_mean_preprocessing(DMD(svd_rank=12))
119119
centered_dmd.fit(X)
120120
```
121121

@@ -124,9 +124,9 @@ Users may also build highly complex DMD models with PyDMD. Below is an example o
124124
from pydmd import BOPDMD
125125

126126
# Build a bagging, optimized DMD (BOP-DMD) model.
127-
# For Optimized DMD (without bagging), use BOPDMD(svd_rank=15, num_trials=0).
127+
# For Optimized DMD (without bagging), use BOPDMD(svd_rank=12, num_trials=0).
128128
bopdmd = BOPDMD(
129-
svd_rank=15, # Rank of the DMD fit.
129+
svd_rank=12, # Rank of the DMD fit.
130130
num_trials=100, # Number of bagging trials to perform.
131131
trial_size=0.5, # Use 50% of the total number of snapshots per trial.
132132
eig_constraints={"imag", "conjugate_pairs"}, # Eigenvalues must be imaginary and conjugate pairs.

0 commit comments

Comments
 (0)