You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+11-3Lines changed: 11 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -50,6 +50,7 @@
50
50
*[Quickstart guide](#quickstart-guide)
51
51
*[Examples and Tutorials](#examples-and-tutorials)
52
52
*[Awards](#awards)
53
+
*[Citing PyDMD](#citing-pydmd)
53
54
*[References](#references)
54
55
*[Developers and contributors](#developers-and-contributors)
55
56
*[Funding](#funding)
@@ -172,12 +173,19 @@ Also provided below is an example output of the `plot_summary()` function when g
172
173
173
174
First prize winner in **DSWeb 2019 Contest**_Tutorials on Dynamical Systems Software_ (Junior Faculty Category). You can read the winner tutorial (PDF format) in the [tutorials](tutorials/tutorial_dsweb.pdf) folder.
174
175
176
+
## Citing PyDMD
177
+
When citing PyDMD, please cite both of the following references:
178
+
* Demo, Tezzele, Rozza. *PyDMD: Python Dynamic Mode Decomposition*. Journal of Open Source Software, 2018. [[DOI](https://doi.org/10.21105/joss.00530)]
To implement the various versions of the DMD algorithm we follow these works:
177
183
178
184
### General DMD References
179
185
* Kutz, Brunton, Brunton, Proctor. *Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems*. SIAM Other Titles in Applied Mathematics, 2016. [[DOI](https://doi.org/10.1137/1.9781611974508)][[bibitem](readme/refs/Kutz2016_1.bib)].
180
-
* Brunton, Budišić, Kaiser, Kutz. *Modern Koopman Theory for Dynamical Systems*. SIAM Review, 2022. [[DOI](https://doi.org/10.1137/21M1401243)][[bibitem](readme/refs/Brunton2022.bib)].
186
+
* Schmid. *Dynamic mode decomposition of numerical and experimental data*. Journal of Fluid Mechanics, 2010. [[DOI](https://doi.org/10.1017/S0022112010001217)][[bibitem](readme/refs/Schmid2010)]
187
+
* Tu, Rowley, Luchtenburg, Brunton, Kutz. *On Dynamic Mode Decomposition: Theory and Applications*. Journal of Computational Dynamics, 2014. [[DOI](https://doi.org/10.3934/jcd.2014.1.391)][[bibitem](readme/refs/Tu2014.bib)]
188
+
* Schmid. *Dynamic mode decomposition and its variants*. Annual Review of Fluid Mechanics, 2022. [[DOI](https://doi.org/10.1146/annurev-fluid-030121-015835)][[bibitem](readme/refs/Schmid2022)]
181
189
182
190
### DMD Variants: Noise-robust Methods
183
191
***Forward-backward DMD:** Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)][[bibitem](readme/refs/Dawson2016.bib)].
@@ -199,11 +207,11 @@ To implement the various versions of the DMD algorithm we follow these works:
199
207
***Parametric DMD:** Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. SIAM Journal on Applied Dynamical Systems, 2023. [[DOI](https://doi.org/10.1137/22M1481658)][[bibitem](readme/refs/Andreuzzi2021.bib)].
200
208
***Extended DMD:** Williams, Rowley, Kevrekidis. *A kernel-based method for data-driven koopman spectral analysis*. Journal of Computational Dynamics, 2015. [[DOI](https://doi.org/10.3934/jcd.2015005)][[bibitem](readme/refs/Williams2015.bib)].
201
209
***LANDO:** Baddoo, Herrmann, McKeon, Brunton. *Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rspa.2021.0830)][[bibitem](readme/refs/Baddoo2022.bib)].
210
+
***DMD with Centering:** Hirsh, Harris, Kutz, Brunton. *Centering data improves the dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2020. [[DOI](https://doi.org/10.1137/19M1289881)][[bibitem](readme/refs/Hirsh2020.bib)]
202
211
203
-
### Implementation Tools and Preprocessing
212
+
### Implementation Tools
204
213
* Gavish, Donoho. *The optimal hard threshold for singular values is 4/sqrt(3)*. IEEE Transactions on Information Theory, 2014. [[DOI](https://doi.org/10.1109/TIT.2014.2323359)][[bibitem](readme/refs/Gavish2014.bib)].
205
214
* Matsumoto, Indinger. *On-the-fly algorithm for dynamic mode decomposition using incremental singular value decomposition and total least squares*. 2017. [[arXiv](https://arxiv.org/abs/1703.11004)][[bibitem](readme/refs/Matsumoto2017.bib)].
206
-
* Hirsh, Harris, Kutz, Brunton. *Centering data improves the dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2020. [[DOI](https://doi.org/10.1137/19M1289881)][[bibitem](readme/refs/Hirsh2020.bib)]
207
215
208
216
### Recent works using PyDMD
209
217
You can find a list of the scientific works using **PyDMD**[here](https://scholar.google.com/scholar?oi=bibs&hl=en&cites=5544023489671534143).
0 commit comments