Skip to content

Commit 7020437

Browse files
klapofandreuzmtezzele
authored
Apply suggestions from code review
Co-authored-by: Francesco Andreuzzi <[email protected]> Co-authored-by: Marco Tezzele <[email protected]>
1 parent 6707a96 commit 7020437

File tree

1 file changed

+14
-17
lines changed

1 file changed

+14
-17
lines changed

pydmd/costs.py

Lines changed: 14 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -474,9 +474,8 @@ def fit(
474474

475475
# Perform the sliding window DMD fitting.
476476
for k in range(self._n_slides):
477-
if verbose:
478-
if k // 50 == k / 50:
479-
print("{} of {}".format(k, self._n_slides))
477+
if verbose and k % 50 == 0:
478+
print("{} of {}".format(k, self._n_slides))
480479

481480
sample_slice = self.get_window_indices(k)
482481
data_window = data[:, sample_slice]
@@ -487,8 +486,7 @@ def fit(
487486
time_window = original_time_window - t_start
488487

489488
# Subtract off the time mean before rounding corners.
490-
c = np.mean(data_window, 1, keepdims=True)
491-
data_window = data_window - c
489+
data_window -= np.mean(data_window, 1, keepdims=True)
492490

493491
# Round the corners of the window.
494492
data_window = data_window * lv_kern
@@ -518,8 +516,8 @@ def fit(
518516
self._amplitudes_array[
519517
k, : optdmd.eigs.shape[0]
520518
] = optdmd.amplitudes
521-
self._window_means_array[k, :] = c.flatten()
522-
self._time_array[k, :] = original_time_window
519+
self._window_means_array[k] = c.flatten()
520+
self._time_array[k] = original_time_window
523521

524522
# Reset optdmd between iterations
525523
if not self._global_svd:
@@ -549,12 +547,11 @@ def get_window_indices(self, k):
549547
# Get the window indices and data.
550548
sample_start = self._step_size * k
551549
if k == self._n_slides - 1 and self._non_integer_n_slide:
552-
sample_slice = slice(-self._window_length, None)
550+
return slice(-self._window_length, None)
553551
else:
554-
sample_slice = slice(
552+
return slice(
555553
sample_start, sample_start + self._window_length
556554
)
557-
return sample_slice
558555

559556
def cluster_omega(
560557
self,
@@ -875,7 +872,7 @@ def scale_reconstruction(
875872
(self._n_components, self._n_data_vars, self._window_length)
876873
)
877874
for j in np.unique(self._omega_classes):
878-
xr_sep_window[j, :, :] = np.linalg.multi_dot(
875+
xr_sep_window[j] = np.linalg.multi_dot(
879876
[
880877
w[:, classification == j],
881878
np.diag(b[classification == j]),
@@ -884,12 +881,12 @@ def scale_reconstruction(
884881
).real
885882

886883
# Add the constant offset to the lowest frequency cluster.
887-
if include_means and (j == np.argmin(self._cluster_centroids)):
888-
xr_sep_window[j, :, :] += c
889-
xr_sep_window[j, :, :] = xr_sep_window[j, :, :] * recon_filter
884+
if include_means and j == np.argmin(self._cluster_centroids):
885+
xr_sep_window[j] += c
886+
xr_sep_window[j] = xr_sep_window[j] * recon_filter
890887

891888
xr_sep[j, :, window_indices] = (
892-
xr_sep[j, :, window_indices] + xr_sep_window[j, :, :]
889+
xr_sep[j, :, window_indices] + xr_sep_window[j]
893890
)
894891

895892
xn[window_indices] += recon_filter
@@ -921,8 +918,8 @@ def scale_separation(
921918
scale_reconstruction_kwargs = {}
922919

923920
xr_sep = self.scale_reconstruction(**scale_reconstruction_kwargs)
924-
xr_low_frequency = xr_sep[0, :, :]
925-
xr_high_frequency = xr_sep[1:, :, :].sum(axis=0)
921+
xr_low_frequency = xr_sep[0]
922+
xr_high_frequency = xr_sep[1:].sum(axis=0)
926923

927924
return xr_low_frequency, xr_high_frequency
928925

0 commit comments

Comments
 (0)