|
230 | 230 | " step_size_array=step_sizes,\n", |
231 | 231 | " global_svd_array=global_svd_array,\n", |
232 | 232 | " cluster_sweep=True,\n", |
233 | | - " transform_method='absolute',\n", |
| 233 | + " transform_method=\"absolute\",\n", |
234 | 234 | " )\n", |
235 | 235 | "\n", |
236 | 236 | " mrc.fit(data, np.atleast_2d(ts))" |
|
803 | 803 | "source": [ |
804 | 804 | "da = mrc._da_omega\n", |
805 | 805 | "x = da.values\n", |
806 | | - "x = x.reshape(len(da.window_length), len(da.window_time_means) * len(da.svd_rank))\n", |
| 806 | + "x = x.reshape(\n", |
| 807 | + " len(da.window_length), len(da.window_time_means) * len(da.svd_rank)\n", |
| 808 | + ")\n", |
807 | 809 | "\n", |
808 | 810 | "# Squared frequencies\n", |
809 | 811 | "x_trans = np.abs(x.imag) ** 2 / (2 * np.pi)\n", |
810 | 812 | "plt.figure(figsize=(5, 2.5))\n", |
811 | 813 | "plt.hist(\n", |
812 | 814 | " x=x_trans.T,\n", |
813 | 815 | " bins=np.linspace(0, 0.005, 100),\n", |
814 | | - " histtype='barstacked',\n", |
| 816 | + " histtype=\"barstacked\",\n", |
815 | 817 | " density=True,\n", |
816 | 818 | " label=range(mrc.n_decompositions),\n", |
817 | | - ");\n", |
| 819 | + ")\n", |
818 | 820 | "plt.gca().set_title(\"Global histogram; Interpolated decomposition levels\")\n", |
819 | 821 | "plt.gca().set_xlabel(r\"$Im(\\omega)^2 (2 \\pi)^{-1}$ (s$^2$)\")\n", |
820 | | - "plt.legend(title='decomposition level')\n", |
| 822 | + "plt.legend(title=\"decomposition level\")\n", |
821 | 823 | "\n", |
822 | 824 | "# Frequency\n", |
823 | 825 | "plt.figure(figsize=(5, 2.5))\n", |
824 | 826 | "x_trans = np.abs(x.imag) / (2 * np.pi)\n", |
825 | 827 | "plt.hist(\n", |
826 | 828 | " x=x_trans.T,\n", |
827 | 829 | " bins=100,\n", |
828 | | - " histtype='barstacked',\n", |
| 830 | + " histtype=\"barstacked\",\n", |
829 | 831 | " density=True,\n", |
830 | 832 | " label=range(mrc.n_decompositions),\n", |
831 | | - ");\n", |
| 833 | + ")\n", |
832 | 834 | "plt.gca().set_title(\"Global histogram; Interpolated decomposition levels\")\n", |
833 | 835 | "plt.gca().set_xlabel(r\"$Im(|\\omega|) (2 \\pi)^{-1}$ (s$^{-1}$)\")\n", |
834 | | - "plt.legend(title='decomposition level')\n", |
| 836 | + "plt.legend(title=\"decomposition level\")\n", |
835 | 837 | "\n", |
836 | 838 | "# Period\n", |
837 | 839 | "plt.figure(figsize=(5, 2.5))\n", |
838 | 840 | "x_trans = (2 * np.pi) / np.abs(x.imag)\n", |
839 | 841 | "plt.hist(\n", |
840 | 842 | " x=x_trans.T,\n", |
841 | 843 | " bins=100,\n", |
842 | | - " histtype='barstacked',\n", |
| 844 | + " histtype=\"barstacked\",\n", |
843 | 845 | " density=True,\n", |
844 | 846 | " label=range(mrc.n_decompositions),\n", |
845 | | - ");\n", |
846 | | - "plt.legend(title='decomposition level')\n", |
| 847 | + ")\n", |
| 848 | + "plt.legend(title=\"decomposition level\")\n", |
847 | 849 | "plt.gca().set_title(\"Global histogram; Interpolated decomposition levels\")\n", |
848 | 850 | "plt.gca().set_xlabel(r\"Period; $(2 \\pi) / Im(|\\omega|)$ (s)\")" |
849 | 851 | ] |
|
911 | 913 | "plt.hist(\n", |
912 | 914 | " x=x_trans.T,\n", |
913 | 915 | " bins=np.logspace(start=np.log10(20), stop=np.log10(1300), num=100),\n", |
914 | | - " histtype='barstacked',\n", |
| 916 | + " histtype=\"barstacked\",\n", |
915 | 917 | " label=range(mrc.n_decompositions),\n", |
916 | 918 | " weights=weights.T,\n", |
917 | | - ");\n", |
918 | | - "plt.xscale('log')\n", |
919 | | - "plt.legend(title='decomposition level')\n", |
| 919 | + ")\n", |
| 920 | + "plt.xscale(\"log\")\n", |
| 921 | + "plt.legend(title=\"decomposition level\")\n", |
920 | 922 | "plt.gca().set_title(\"Global histogram; Interpolated decomposition levels\")\n", |
921 | 923 | "plt.gca().set_xlabel(r\"Period; $(2 \\pi) / Im(|\\omega|)$ (s)\")\n", |
922 | | - "plt.gca().set_ylabel('Weighted Count (-)')" |
| 924 | + "plt.gca().set_ylabel(\"Weighted Count (-)\")" |
923 | 925 | ] |
924 | 926 | }, |
925 | 927 | { |
|
1054 | 1056 | }, |
1055 | 1057 | "outputs": [], |
1056 | 1058 | "source": [ |
1057 | | - "x_trans = (2 * np.pi / 10**omega_array)\n", |
| 1059 | + "x_trans = 2 * np.pi / 10**omega_array\n", |
1058 | 1060 | "unique_labels, label_counts = np.unique(omega_classes, return_counts=True)\n", |
1059 | 1061 | "weights = label_counts.max() / label_counts\n", |
1060 | 1062 | "x_trans_labels = [x_trans[omega_classes == label] for label in unique_labels]\n", |
|
1067 | 1069 | " w = weights[ind_array]\n", |
1068 | 1070 | " x_w = x_trans_labels[ind_list]\n", |
1069 | 1071 | " w_broadcast = np.broadcast_to(w, (x_w.shape))\n", |
1070 | | - " weights_labels.append(w_broadcast)\n" |
| 1072 | + " weights_labels.append(w_broadcast)" |
1071 | 1073 | ] |
1072 | 1074 | }, |
1073 | 1075 | { |
|
1099 | 1101 | "plt.hist(\n", |
1100 | 1102 | " x=x_trans_labels,\n", |
1101 | 1103 | " bins=np.logspace(start=np.log10(20), stop=np.log10(1300), num=100),\n", |
1102 | | - " histtype='barstacked',\n", |
1103 | | - " weights=weights_labels\n", |
1104 | | - ");\n", |
| 1104 | + " histtype=\"barstacked\",\n", |
| 1105 | + " weights=weights_labels,\n", |
| 1106 | + ")\n", |
1105 | 1107 | "\n", |
1106 | 1108 | "ax = plt.gca()\n", |
1107 | | - "ax.set_xscale('log')\n", |
| 1109 | + "ax.set_xscale(\"log\")\n", |
1108 | 1110 | "ax.set_title(\n", |
1109 | 1111 | " \"Global histogram of frequencies; Interpolated decomposition levels\"\n", |
1110 | 1112 | ")\n", |
1111 | 1113 | "ax.set_xlabel(r\"Period; $(2 \\pi) / Im(|\\omega|)$ (s)\")\n", |
1112 | | - "ax.set_ylabel('Density (-)')\n", |
| 1114 | + "ax.set_ylabel(\"Density (-)\")\n", |
1113 | 1115 | "[\n", |
1114 | 1116 | " ax.axvline(2 * np.pi / (10**c), color=\"k\", ls=\"--\")\n", |
1115 | 1117 | " for nc, c in enumerate(cluster_centroids)\n", |
1116 | | - "];\n", |
| 1118 | + "]\n", |
1117 | 1119 | "\n", |
1118 | 1120 | "ylim_bottom, ylim_top = ax.get_ylim()\n", |
1119 | 1121 | "[\n", |
|
1126 | 1128 | " ha=\"right\",\n", |
1127 | 1129 | " )\n", |
1128 | 1130 | " for c in cluster_centroids\n", |
1129 | | - "];\n" |
| 1131 | + "];" |
1130 | 1132 | ] |
1131 | 1133 | }, |
1132 | 1134 | { |
|
0 commit comments