Skip to content

Commit 8049ef3

Browse files
sichinagamtezzele
authored andcommitted
Changed Omega naming
1 parent d90b791 commit 8049ef3

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

pydmd/utils.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
# compute_rqb uses "RQB".
1414
SVD = namedtuple("SVD", ["U", "s", "V"])
1515
TLSQ = namedtuple("TLSQ", ["X_denoised", "Y_denoised"])
16-
RQB = namedtuple("RQB", ["Q", "B", "Omega"])
16+
RQB = namedtuple("RQB", ["Q", "B", "test_matrix"])
1717

1818

1919
def _svht(sigma_svd: np.ndarray, rows: int, cols: int) -> int:
@@ -196,10 +196,10 @@ def compute_rqb(
196196
svd_rank: Number,
197197
oversampling: int,
198198
power_iters: int,
199-
Omega: np.ndarray = None,
199+
test_matrix: np.ndarray = None,
200200
seed: int = None,
201201
) -> NamedTuple(
202-
"RQB", [("Q", np.ndarray), ("B", np.ndarray), ("Omega", np.ndarray)]
202+
"RQB", [("Q", np.ndarray), ("B", np.ndarray), ("test_matrix", np.ndarray)]
203203
):
204204
"""
205205
Randomized QB Decomposition.
@@ -222,18 +222,18 @@ def compute_rqb(
222222
the Randomized QB Decomposition. Note that as many as 1 to 2 power
223223
iterations often lead to considerable improvements.
224224
:type power_iters: int
225-
:param Omega: The random test matrix that will be used when executing
225+
:param test_matrix: The random test matrix that will be used when executing
226226
the Randomized QB Decomposition. If not provided, the `svd_rank` and
227227
`oversampling` parameters will be used to compute the random matrix.
228-
:type Omega: numpy.ndarray
228+
:type test_matrix: numpy.ndarray
229229
:param seed: Seed used to initialize the random generator when computing
230230
random test matrices.
231231
:type seed: int
232232
:return: the orthonormal basis matrix, the transformed data matrix, and
233233
the random test matrix.
234234
:rtype: NamedTuple("RQB", [('Q', np.ndarray),
235235
('B', np.ndarray),
236-
('Omega', np.ndarray)])
236+
('test_matrix', np.ndarray)])
237237
238238
References:
239239
N. Benjamin Erichson, Lionel Mathelin, J. Nathan Kutz, Steven L. Brunton.
@@ -244,14 +244,14 @@ def compute_rqb(
244244
raise ValueError("Please ensure that input data is a 2D array.")
245245

246246
# Define the random test matrix if not provided.
247-
if Omega is None:
247+
if test_matrix is None:
248248
m = X.shape[-1]
249249
r = compute_rank(X, svd_rank)
250250
rng = np.random.default_rng(seed)
251-
Omega = rng.standard_normal((m, r + oversampling))
251+
test_matrix = rng.standard_normal((m, r + oversampling))
252252

253253
# Compute sampling matrix.
254-
Y = X.dot(Omega)
254+
Y = X.dot(test_matrix)
255255

256256
# Perform power iterations.
257257
for _ in range(power_iters):
@@ -265,7 +265,7 @@ def compute_rqb(
265265
# Project the snapshot matrix onto the smaller space.
266266
B = Q.conj().T.dot(X)
267267

268-
return RQB(Q, B, Omega)
268+
return RQB(Q, B, test_matrix)
269269

270270

271271
def pseudo_hankel_matrix(X: np.ndarray, d: int) -> np.ndarray:

0 commit comments

Comments
 (0)