Skip to content

Commit 98a435a

Browse files
authored
Consolidated quickstart and example sections
1 parent d8016db commit 98a435a

File tree

1 file changed

+7
-24
lines changed

1 file changed

+7
-24
lines changed

README.md

Lines changed: 7 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,6 @@
4848
* [Description](#description)
4949
* [Dependencies and installation](#dependencies-and-installation)
5050
* [Quickstart guide](#quickstart-guide)
51-
* [Examples and Tutorials](#examples-and-tutorials)
5251
* [Awards](#awards)
5352
* [Citing PyDMD](#citing-pydmd)
5453
* [References](#references)
@@ -130,7 +129,7 @@ bopdmd = BOPDMD(
130129
num_trials=100, # Number of bagging trials to perform.
131130
trial_size=0.5, # Use 50% of the total number of snapshots per trial.
132131
eig_constraints={"imag", "conjugate_pairs"}, # Eigenvalues must be imaginary and conjugate pairs.
133-
varpro_opts_dict={"tol":0.2, "verbose":True}, # Set convergence tolerance and use verbose updates.
132+
varpro_opts_dict={"verbose":True}, # Use verbose variable projection updates.
134133
)
135134

136135
# Fit the BOP-DMD model.
@@ -139,34 +138,18 @@ bopdmd = BOPDMD(
139138
bopdmd.fit(X, t)
140139
```
141140

142-
Note that modules and functions may be parameterized by a variety of inputs for added customization, so we generally recommend that new users refer to our [module documentation](https://pydmd.github.io/PyDMD/code.html), [plotting tool documentation](https://pydmd.github.io/PyDMD/plotter.html), and to our module-specific [tutorials](tutorials/README.md) for more information.
143-
144-
For users who are unsure of which DMD method is best for them, we provide the following flow chart, which outlines how one might choose an appropriate DMD variant based on specific problem types or data sets.
145-
141+
Provided below is an example output of the `plot_summary()` function when given a DMD model fitted to mean-centered flow past a cylinder data available [here](dmdbook.com/DATA.zip). A rank-12 exact DMD model was used to generate this summary. Notice how eigenvalues, modes, and dynamics are color-coded to indicate associations, and that eigenvalue marker sizes indicate spatiotemporal mode amplitudes or importance. Plotter documentation can be found [here](https://pydmd.github.io/PyDMD/plotter.html).
146142
<p align="center">
147-
<img src="readme/pydmd_guide.svg" width="1000" />
143+
<img src="readme/summary-example.png" alt></br>
144+
<em>Sample output of the plot_summary function.</em>
148145
</p>
149146

150-
## Examples and Tutorials
151-
You can find useful tutorials on how to use the package in the [tutorials](tutorials/README.md) folder.
147+
PyDMD modules and functions may be parameterized by a variety of inputs for added customization, so we generally recommend that new users refer to our [documentation](https://pydmd.github.io/PyDMD/code.html), and to our module-specific [tutorials](tutorials/README.md) for more examples and information.
152148

153-
Here we show a simple application (taken from [tutorial 2](tutorials/tutorial2/tutorial-2-adv-dmd.ipynb)): we collect few snapshots from a toy system with some noise and reconstruct the entire system evolution.
154-
155-
Also provided below is an example output of the `plot_summary()` function when given a DMD model fitted to this data set. A rank-2 Optimized DMD model was used to generate the summary below. Note that the eigenvalues, modes, and dynamics are color-coded to indicate associations, and that eigenvalue marker sizes indicate spatiotemporal mode amplitudes or importance.
156-
157-
<p align="center">
158-
<img src="readme/dmd-example.png" alt>
159-
<em>The original snapshots used as input for the dynamic mode decomposition</em>
160-
</p>
161-
162-
<p align="center">
163-
<img src="readme/dmd-example.gif" alt></br>
164-
<em>The system evolution reconstructed with dynamic mode decomposition</em>
165-
</p>
149+
For users who are unsure of which DMD method is best for them, we provide the following flow chart, which outlines how one might choose an appropriate DMD variant based on specific problem types or data sets.
166150

167151
<p align="center">
168-
<img src="readme/summary-example.png" alt></br>
169-
<em>Sample output of the plot_summary function.</em>
152+
<img src="readme/pydmd_guide.svg" width="1000" />
170153
</p>
171154

172155
## Awards

0 commit comments

Comments
 (0)