You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+7-24Lines changed: 7 additions & 24 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -48,7 +48,6 @@
48
48
*[Description](#description)
49
49
*[Dependencies and installation](#dependencies-and-installation)
50
50
*[Quickstart guide](#quickstart-guide)
51
-
*[Examples and Tutorials](#examples-and-tutorials)
52
51
*[Awards](#awards)
53
52
*[Citing PyDMD](#citing-pydmd)
54
53
*[References](#references)
@@ -130,7 +129,7 @@ bopdmd = BOPDMD(
130
129
num_trials=100, # Number of bagging trials to perform.
131
130
trial_size=0.5, # Use 50% of the total number of snapshots per trial.
132
131
eig_constraints={"imag", "conjugate_pairs"}, # Eigenvalues must be imaginary and conjugate pairs.
133
-
varpro_opts_dict={"tol":0.2, "verbose":True}, # Set convergence tolerance and use verbose updates.
132
+
varpro_opts_dict={"verbose":True}, # Use verbose variable projection updates.
134
133
)
135
134
136
135
# Fit the BOP-DMD model.
@@ -139,34 +138,18 @@ bopdmd = BOPDMD(
139
138
bopdmd.fit(X, t)
140
139
```
141
140
142
-
Note that modules and functions may be parameterized by a variety of inputs for added customization, so we generally recommend that new users refer to our [module documentation](https://pydmd.github.io/PyDMD/code.html), [plotting tool documentation](https://pydmd.github.io/PyDMD/plotter.html), and to our module-specific [tutorials](tutorials/README.md) for more information.
143
-
144
-
For users who are unsure of which DMD method is best for them, we provide the following flow chart, which outlines how one might choose an appropriate DMD variant based on specific problem types or data sets.
145
-
141
+
Provided below is an example output of the `plot_summary()` function when given a DMD model fitted to mean-centered flow past a cylinder data available [here](dmdbook.com/DATA.zip). A rank-12 exact DMD model was used to generate this summary. Notice how eigenvalues, modes, and dynamics are color-coded to indicate associations, and that eigenvalue marker sizes indicate spatiotemporal mode amplitudes or importance. Plotter documentation can be found [here](https://pydmd.github.io/PyDMD/plotter.html).
146
142
<palign="center">
147
-
<img src="readme/pydmd_guide.svg" width="1000" />
143
+
<imgsrc="readme/summary-example.png"alt></br>
144
+
<em>Sample output of the plot_summary function.</em>
148
145
</p>
149
146
150
-
## Examples and Tutorials
151
-
You can find useful tutorials on how to use the package in the [tutorials](tutorials/README.md) folder.
147
+
PyDMD modules and functions may be parameterized by a variety of inputs for added customization, so we generally recommend that new users refer to our [documentation](https://pydmd.github.io/PyDMD/code.html), and to our module-specific [tutorials](tutorials/README.md) for more examples and information.
152
148
153
-
Here we show a simple application (taken from [tutorial 2](tutorials/tutorial2/tutorial-2-adv-dmd.ipynb)): we collect few snapshots from a toy system with some noise and reconstruct the entire system evolution.
154
-
155
-
Also provided below is an example output of the `plot_summary()` function when given a DMD model fitted to this data set. A rank-2 Optimized DMD model was used to generate the summary below. Note that the eigenvalues, modes, and dynamics are color-coded to indicate associations, and that eigenvalue marker sizes indicate spatiotemporal mode amplitudes or importance.
156
-
157
-
<palign="center">
158
-
<imgsrc="readme/dmd-example.png"alt>
159
-
<em>The original snapshots used as input for the dynamic mode decomposition</em>
160
-
</p>
161
-
162
-
<palign="center">
163
-
<imgsrc="readme/dmd-example.gif"alt></br>
164
-
<em>The system evolution reconstructed with dynamic mode decomposition</em>
165
-
</p>
149
+
For users who are unsure of which DMD method is best for them, we provide the following flow chart, which outlines how one might choose an appropriate DMD variant based on specific problem types or data sets.
166
150
167
151
<palign="center">
168
-
<imgsrc="readme/summary-example.png"alt></br>
169
-
<em>Sample output of the plot_summary function.</em>
0 commit comments