@@ -90,7 +90,7 @@ class BOPDMDOperator(DMDOperator):
9090 negative arguments for no warning condition.
9191 :type bag_warning: int
9292 :param bag_maxfail: Number of consecutive non-converged trials of BOP-DMD
93- at which to terminate the fit. Default is 100 . This parameter becomes
93+ at which to terminate the fit. Default is 200 . This parameter becomes
9494 active only when `remove_bad_bags=True`. Use negative arguments for no
9595 stopping condition.
9696 :type bag_maxfail: int
@@ -959,7 +959,7 @@ class BOPDMD(DMDBase):
959959 trial. If trial_size is a float between 0 and 1, int(trial_size * m)
960960 many observations will be used per trial, where m denotes the total
961961 number of data points observed. Note that any other type of input for
962- trial_size will yield an error. Default is 0.2 .
962+ trial_size will yield an error. Default is 0.6 .
963963 :type trial_size: int or float
964964 :param eig_sort: Method used to sort eigenvalues (and modes accordingly)
965965 when performing BOP-DMD. Eigenvalues will be sorted by real part and
@@ -997,7 +997,7 @@ class BOPDMD(DMDBase):
997997 negative arguments for no warning condition.
998998 :type bag_warning: int
999999 :param bag_maxfail: Number of consecutive non-converged trials of BOP-DMD
1000- at which to terminate the fit. Default is 100 . This parameter becomes
1000+ at which to terminate the fit. Default is 200 . This parameter becomes
10011001 active only when `remove_bad_bags=True`. Use negative arguments for no
10021002 stopping condition.
10031003 :type bag_maxfail: int
@@ -1025,7 +1025,7 @@ def __init__(
10251025 mode_prox = None ,
10261026 remove_bad_bags = False ,
10271027 bag_warning = 100 ,
1028- bag_maxfail = 100 ,
1028+ bag_maxfail = 200 ,
10291029 varpro_opts_dict = None ,
10301030 ):
10311031 self ._svd_rank = svd_rank
0 commit comments