@@ -189,14 +189,15 @@ def compute_operator(self, X, Y, kernel_function, updating=False):
189189 y_0 = Y [:, ind_0 ][..., None ]
190190 C = np .sqrt (kernel_function (x_0 , x_0 ))
191191 self ._sparse_dictionary = np .copy (x_0 )
192+ parsing_inds = parsing_inds [1 :]
192193
193194 # Initialize the online learning routine, if applicable.
194195 if self ._online :
195196 self ._cholesky = C
196197 self ._P = np .ones ((1 , 1 ))
197198 self ._weights = y_0 / (self ._cholesky [0 ][0 ] ** 2 )
198199
199- for ind_t in parsing_inds [ 1 :] :
200+ for ind_t in parsing_inds :
200201 # Grab the next corresponding pair of snapshots.
201202 x_t = X [:, ind_t ][..., None ]
202203 y_t = Y [:, ind_t ][..., None ]
@@ -297,17 +298,18 @@ def compute_linear_operator(
297298 )
298299
299300 @staticmethod
300- def _update_cholesky (cholesky , s , k ):
301+ def _update_cholesky (cholesky , s , kxx ):
301302 """
302303 Helper function that updates the cholesky factor given the current
303- cholesky factor and the necessary quantities for updating.
304+ cholesky factor and the necessary quantities for updating. See the
305+ documentation of `_cholesky_step()` for more parameter information.
304306 """
305307 cholesky = np .vstack (
306308 [
307309 np .hstack ([cholesky , np .zeros ((len (cholesky ), 1 ))]),
308310 np .append (
309311 s .conj ().T ,
310- max (0 , np .abs (np .sqrt (k - np .sum (s ** 2 )))),
312+ max (0 , np .abs (np .sqrt (kxx - np .sum (s ** 2 )))),
311313 ),
312314 ]
313315 )
0 commit comments