Skip to content

Commit f94ff32

Browse files
sichinagamtezzele
authored andcommitted
Moved .bib files to refs folder -- updated readme
1 parent 4cccaa0 commit f94ff32

File tree

11 files changed

+10
-10
lines changed

11 files changed

+10
-10
lines changed

README.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -111,16 +111,16 @@ First prize winner in **DSWeb 2019 Contest** _Tutorials on Dynamical Systems Sof
111111
## References
112112
To implement the various versions of the DMD algorithm we follow these works:
113113

114-
* Kutz, Brunton, Brunton, Proctor. *Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems*. SIAM Other Titles in Applied Mathematics, 2016. [[DOI](https://doi.org/10.1137/1.9781611974508)] [[bibitem](readme/Kutz2016_1.bib)].
115-
* Gavish, Donoho. *The optimal hard threshold for singular values is 4/sqrt(3)*. IEEE Transactions on Information Theory, 2014. [[DOI](https://doi.org/10.1109/TIT.2014.2323359)] [[bibitem](readme/Gavish2014.bib)].
116-
* Matsumoto, Indinger. *On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least Squares*. 2017. [[arXiv](https://arxiv.org/abs/1703.11004)] [[bibitem](readme/Matsumoto2017.bib)].
117-
* Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)] [[bibitem](readme/Hemati2017.bib)].
118-
* Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)] [[bibitem](readme/Dawson2016.bib)].
119-
* Kutz, Fu, Brunton. *Multiresolution Dynamic Mode Decomposition*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1023543)] [[bibitem](readme/Kutz2016_2.bib)].
120-
* Erichson, Brunton, Kutz. *Compressed dynamic mode decomposition for background modeling*. Journal of Real-Time Image Processing, 2016. [[DOI](https://doi.org/10.1007/s11554-016-0655-2)] [[bibitem](readme/Erichson2016.bib)].
121-
* Le Clainche, Vega. *Higher Order Dynamic Mode Decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)] [[bibitem](readme/LeClainche2017.bib)].
122-
* Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)] [[bibitem](readme/Andreuzzi2021.bib)].
123-
* Jovanović, Schmid, Nichols *Sparsity-promoting dynamic mode decomposition*. 2014. [[arXiv](https://arxiv.org/abs/1309.4165)] [[bibitem](readme/Jovanovic2014.bib)].
114+
* Kutz, Brunton, Brunton, Proctor. *Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems*. SIAM Other Titles in Applied Mathematics, 2016. [[DOI](https://doi.org/10.1137/1.9781611974508)] [[bibitem](readme/refs/Kutz2016_1.bib)].
115+
* Gavish, Donoho. *The optimal hard threshold for singular values is 4/sqrt(3)*. IEEE Transactions on Information Theory, 2014. [[DOI](https://doi.org/10.1109/TIT.2014.2323359)] [[bibitem](readme/refs/Gavish2014.bib)].
116+
* Matsumoto, Indinger. *On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least Squares*. 2017. [[arXiv](https://arxiv.org/abs/1703.11004)] [[bibitem](readme/refs/Matsumoto2017.bib)].
117+
* Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)] [[bibitem](readme/refs/Hemati2017.bib)].
118+
* Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)] [[bibitem](readme/refs/Dawson2016.bib)].
119+
* Kutz, Fu, Brunton. *Multiresolution Dynamic Mode Decomposition*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1023543)] [[bibitem](readme/refs/Kutz2016_2.bib)].
120+
* Erichson, Brunton, Kutz. *Compressed dynamic mode decomposition for background modeling*. Journal of Real-Time Image Processing, 2016. [[DOI](https://doi.org/10.1007/s11554-016-0655-2)] [[bibitem](readme/refs/Erichson2016.bib)].
121+
* Le Clainche, Vega. *Higher Order Dynamic Mode Decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)] [[bibitem](readme/refs/LeClainche2017.bib)].
122+
* Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)] [[bibitem](readme/refs/Andreuzzi2021.bib)].
123+
* Jovanović, Schmid, Nichols *Sparsity-promoting dynamic mode decomposition*. 2014. [[arXiv](https://arxiv.org/abs/1309.4165)] [[bibitem](readme/refs/Jovanovic2014.bib)].
124124

125125

126126
### Recent works using PyDMD

0 commit comments

Comments
 (0)