Skip to content

Commit fbe1ca8

Browse files
sichinagamtezzele
authored andcommitted
Added variant names
1 parent fe4bef7 commit fbe1ca8

File tree

1 file changed

+19
-19
lines changed

1 file changed

+19
-19
lines changed

README.md

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -116,27 +116,27 @@ To implement the various versions of the DMD algorithm we follow these works:
116116
* Brunton, Budišić, Kaiser, Kutz. *Modern Koopman Theory for Dynamical Systems*. SIAM Review, 2022. [[DOI](https://doi.org/10.1137/21M1401243)] [[bibitem](readme/refs/Brunton2022.bib)].
117117

118118
### DMD Variants: Noise-robust Methods
119-
* Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)] [[bibitem](readme/refs/Dawson2016.bib)].
120-
* Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)] [[bibitem](readme/refs/Hemati2017.bib)].
121-
* Héas, Herzet. *Low-rank dynamic mode decomposition: An exact and tractable solution*. Journal of Nonlinear Science, 2022. [[DOI](https://doi.org/10.1007/s00332-021-09770-w)] [[bibitem](readme/refs/Heas2022.bib)].
122-
* Takeishi, Kawahara, Yairi. *Subspace dynamic mode decomposition for stochastic Koopman analysis*. Physical Review E, 2017. [[DOI](https://doi.org/10.1103/PhysRevE.96.033310)] [[bibitem](readme/refs/Takeishi2017.bib)].
123-
* Baddoo, Herrmann, McKeon, Kutz, Brunton. *Physics-informed dynamic mode decomposition*. Proceedings of the Royal Society A, 2023. [[DOI](https://doi.org/10.1098/rspa.2022.0576)] [[bibitem](readme/refs/Baddoo2023.bib)].
124-
* Askham, Kutz. *Variable projection methods for an optimized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2018. [[DOI](https://doi.org/10.1137/M1124176)] [[bibitem](readme/refs/Askham2018.bib)].
125-
* Sashidhar, Kutz. *Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rsta.2021.0199)] [[bibitem](readme/refs/Sashidhar2022.bib)].
119+
* **Forward-backward DMD:** Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)] [[bibitem](readme/refs/Dawson2016.bib)].
120+
* **Total least-squares DMD:** Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)] [[bibitem](readme/refs/Hemati2017.bib)].
121+
* **Optimal closed-form DMD:** Héas, Herzet. *Low-rank dynamic mode decomposition: An exact and tractable solution*. Journal of Nonlinear Science, 2022. [[DOI](https://doi.org/10.1007/s00332-021-09770-w)] [[bibitem](readme/refs/Heas2022.bib)].
122+
* **Subspace DMD:** Takeishi, Kawahara, Yairi. *Subspace dynamic mode decomposition for stochastic Koopman analysis*. Physical Review E, 2017. [[DOI](https://doi.org/10.1103/PhysRevE.96.033310)] [[bibitem](readme/refs/Takeishi2017.bib)].
123+
* **Physics-informed DMD:** Baddoo, Herrmann, McKeon, Kutz, Brunton. *Physics-informed dynamic mode decomposition*. Proceedings of the Royal Society A, 2023. [[DOI](https://doi.org/10.1098/rspa.2022.0576)] [[bibitem](readme/refs/Baddoo2023.bib)].
124+
* **Optimized DMD:** Askham, Kutz. *Variable projection methods for an optimized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2018. [[DOI](https://doi.org/10.1137/M1124176)] [[bibitem](readme/refs/Askham2018.bib)].
125+
* **Bagging, optimized DMD:** Sashidhar, Kutz. *Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rsta.2021.0199)] [[bibitem](readme/refs/Sashidhar2022.bib)].
126126

127127
### DMD Variants: Additional Methods and Extensions
128-
* Proctor, Brunton, Kutz. *Dynamic mode decomposition with control*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1013857)] [[bibitem](readme/refs/Proctor2016.bib)].
129-
* Kutz, Fu, Brunton. *Multiresolution Dynamic Mode Decomposition*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1023543)] [[bibitem](readme/refs/Kutz2016_2.bib)].
130-
* Jovanović, Schmid, Nichols *Sparsity-promoting dynamic mode decomposition*. Physics of Fluids, 2014. [[DOI](https://doi.org/10.1063/1.4863670)] [[bibitem](readme/refs/Jovanovic2014.bib)].
131-
* Erichson, Brunton, Kutz. *Compressed dynamic mode decomposition for background modeling*. Journal of Real-Time Image Processing, 2016. [[DOI](https://doi.org/10.1007/s11554-016-0655-2)] [[bibitem](readme/refs/Erichson2016.bib)].
132-
* Erichson, Mathelin, Kutz, Brunton. *Randomized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2019. [[DOI](https://doi.org/10.1137/18M1215013)] [[bibitem](readme/refs/Erichson2019.bib)].
133-
* Le Clainche, Vega. *Higher Order Dynamic Mode Decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)] [[bibitem](readme/refs/LeClainche2017.bib)].
134-
* Brunton, Brunton, Proctor, Kaiser, Kutz. *Chaos as an intermittently forced linear system*. Nature Communications, 2017. [[DOI](https://doi.org/10.1038/s41467-017-00030-8)] [[bibitem](readme/refs/Brunton2017.bib)].
135-
* Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)] [[bibitem](readme/refs/Andreuzzi2021.bib)].
136-
* Williams, Rowley, Kevrekidis. *A kernel-based method for data-driven koopman spectral analysis*. Journal of Computational Dynamics, 2015. [[DOI](https://doi.org/10.3934/jcd.2015005)] [[bibitem](readme/refs/Williams2015.bib)].
137-
* Baddoo, Herrmann, McKeon, Brunton. *Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rspa.2021.0830)] [[bibitem](readme/refs/Baddoo2022.bib)].
138-
139-
### Implementation Tools and Preprocessors
128+
* **DMD with control:** Proctor, Brunton, Kutz. *Dynamic mode decomposition with control*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1013857)] [[bibitem](readme/refs/Proctor2016.bib)].
129+
* **Multiresolution DMD:** Kutz, Fu, Brunton. *Multiresolution dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1023543)] [[bibitem](readme/refs/Kutz2016_2.bib)].
130+
* **Sparsity-promoting DMD:** Jovanović, Schmid, Nichols *Sparsity-promoting dynamic mode decomposition*. Physics of Fluids, 2014. [[DOI](https://doi.org/10.1063/1.4863670)] [[bibitem](readme/refs/Jovanovic2014.bib)].
131+
* **Compressed DMD:** Erichson, Brunton, Kutz. *Compressed dynamic mode decomposition for background modeling*. Journal of Real-Time Image Processing, 2016. [[DOI](https://doi.org/10.1007/s11554-016-0655-2)] [[bibitem](readme/refs/Erichson2016.bib)].
132+
* **Randomized DMD:** Erichson, Mathelin, Kutz, Brunton. *Randomized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2019. [[DOI](https://doi.org/10.1137/18M1215013)] [[bibitem](readme/refs/Erichson2019.bib)].
133+
* **Higher order DMD:** Le Clainche, Vega. *Higher order dynamic mode decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)] [[bibitem](readme/refs/LeClainche2017.bib)].
134+
* **HAVOK:** Brunton, Brunton, Proctor, Kaiser, Kutz. *Chaos as an intermittently forced linear system*. Nature Communications, 2017. [[DOI](https://doi.org/10.1038/s41467-017-00030-8)] [[bibitem](readme/refs/Brunton2017.bib)].
135+
* **Parametric DMD:** Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)] [[bibitem](readme/refs/Andreuzzi2021.bib)].
136+
* **Extended DMD:** Williams, Rowley, Kevrekidis. *A kernel-based method for data-driven koopman spectral analysis*. Journal of Computational Dynamics, 2015. [[DOI](https://doi.org/10.3934/jcd.2015005)] [[bibitem](readme/refs/Williams2015.bib)].
137+
* **LANDO:** Baddoo, Herrmann, McKeon, Brunton. *Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rspa.2021.0830)] [[bibitem](readme/refs/Baddoo2022.bib)].
138+
139+
### Implementation Tools and Preprocessing
140140
* Gavish, Donoho. *The optimal hard threshold for singular values is 4/sqrt(3)*. IEEE Transactions on Information Theory, 2014. [[DOI](https://doi.org/10.1109/TIT.2014.2323359)] [[bibitem](readme/refs/Gavish2014.bib)].
141141
* Matsumoto, Indinger. *On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least Squares*. 2017. [[arXiv](https://arxiv.org/abs/1703.11004)] [[bibitem](readme/refs/Matsumoto2017.bib)].
142142
* Hirsh, Harris, Kutz, Brunton. *Centering data improves the dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2020. [[DOI](https://doi.org/10.1137/19M1289881)] [[bibitem](readme/refs/Hirsh2020.bib)]

0 commit comments

Comments
 (0)