You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+19-19Lines changed: 19 additions & 19 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -116,27 +116,27 @@ To implement the various versions of the DMD algorithm we follow these works:
116
116
* Brunton, Budišić, Kaiser, Kutz. *Modern Koopman Theory for Dynamical Systems*. SIAM Review, 2022. [[DOI](https://doi.org/10.1137/21M1401243)][[bibitem](readme/refs/Brunton2022.bib)].
117
117
118
118
### DMD Variants: Noise-robust Methods
119
-
* Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)][[bibitem](readme/refs/Dawson2016.bib)].
120
-
* Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)][[bibitem](readme/refs/Hemati2017.bib)].
121
-
* Héas, Herzet. *Low-rank dynamic mode decomposition: An exact and tractable solution*. Journal of Nonlinear Science, 2022. [[DOI](https://doi.org/10.1007/s00332-021-09770-w)][[bibitem](readme/refs/Heas2022.bib)].
122
-
* Takeishi, Kawahara, Yairi. *Subspace dynamic mode decomposition for stochastic Koopman analysis*. Physical Review E, 2017. [[DOI](https://doi.org/10.1103/PhysRevE.96.033310)][[bibitem](readme/refs/Takeishi2017.bib)].
123
-
* Baddoo, Herrmann, McKeon, Kutz, Brunton. *Physics-informed dynamic mode decomposition*. Proceedings of the Royal Society A, 2023. [[DOI](https://doi.org/10.1098/rspa.2022.0576)][[bibitem](readme/refs/Baddoo2023.bib)].
124
-
* Askham, Kutz. *Variable projection methods for an optimized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2018. [[DOI](https://doi.org/10.1137/M1124176)][[bibitem](readme/refs/Askham2018.bib)].
125
-
* Sashidhar, Kutz. *Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rsta.2021.0199)][[bibitem](readme/refs/Sashidhar2022.bib)].
119
+
***Forward-backward DMD:**Dawson, Hemati, Williams, Rowley. *Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition*. Experiments in Fluids, 2016. [[DOI](https://doi.org/10.1007/s00348-016-2127-7)][[bibitem](readme/refs/Dawson2016.bib)].
120
+
***Total least-squares DMD:**Hemati, Rowley, Deem, Cattafesta. *De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets*. Theoretical and Computational Fluid Dynamics, 2017. [[DOI](https://doi.org/10.1007/s00162-017-0432-2)][[bibitem](readme/refs/Hemati2017.bib)].
121
+
***Optimal closed-form DMD:**Héas, Herzet. *Low-rank dynamic mode decomposition: An exact and tractable solution*. Journal of Nonlinear Science, 2022. [[DOI](https://doi.org/10.1007/s00332-021-09770-w)][[bibitem](readme/refs/Heas2022.bib)].
122
+
***Subspace DMD:**Takeishi, Kawahara, Yairi. *Subspace dynamic mode decomposition for stochastic Koopman analysis*. Physical Review E, 2017. [[DOI](https://doi.org/10.1103/PhysRevE.96.033310)][[bibitem](readme/refs/Takeishi2017.bib)].
123
+
***Physics-informed DMD:**Baddoo, Herrmann, McKeon, Kutz, Brunton. *Physics-informed dynamic mode decomposition*. Proceedings of the Royal Society A, 2023. [[DOI](https://doi.org/10.1098/rspa.2022.0576)][[bibitem](readme/refs/Baddoo2023.bib)].
124
+
***Optimized DMD:**Askham, Kutz. *Variable projection methods for an optimized dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2018. [[DOI](https://doi.org/10.1137/M1124176)][[bibitem](readme/refs/Askham2018.bib)].
125
+
***Bagging, optimized DMD:**Sashidhar, Kutz. *Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rsta.2021.0199)][[bibitem](readme/refs/Sashidhar2022.bib)].
126
126
127
127
### DMD Variants: Additional Methods and Extensions
128
-
* Proctor, Brunton, Kutz. *Dynamic mode decomposition with control*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1013857)][[bibitem](readme/refs/Proctor2016.bib)].
* Le Clainche, Vega. *Higher Order Dynamic Mode Decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)][[bibitem](readme/refs/LeClainche2017.bib)].
134
-
* Brunton, Brunton, Proctor, Kaiser, Kutz. *Chaos as an intermittently forced linear system*. Nature Communications, 2017. [[DOI](https://doi.org/10.1038/s41467-017-00030-8)][[bibitem](readme/refs/Brunton2017.bib)].
135
-
* Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)][[bibitem](readme/refs/Andreuzzi2021.bib)].
136
-
* Williams, Rowley, Kevrekidis. *A kernel-based method for data-driven koopman spectral analysis*. Journal of Computational Dynamics, 2015. [[DOI](https://doi.org/10.3934/jcd.2015005)][[bibitem](readme/refs/Williams2015.bib)].
137
-
* Baddoo, Herrmann, McKeon, Brunton. *Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rspa.2021.0830)][[bibitem](readme/refs/Baddoo2022.bib)].
138
-
139
-
### Implementation Tools and Preprocessors
128
+
***DMD with control:**Proctor, Brunton, Kutz. *Dynamic mode decomposition with control*. SIAM Journal on Applied Dynamical Systems, 2016. [[DOI](https://doi.org/10.1137/15M1013857)][[bibitem](readme/refs/Proctor2016.bib)].
***Higher order DMD:**Le Clainche, Vega. *Higher order dynamic mode decomposition*. Journal on Applied Dynamical Systems, 2017. [[DOI](https://doi.org/10.1137/15M1054924)][[bibitem](readme/refs/LeClainche2017.bib)].
134
+
***HAVOK:**Brunton, Brunton, Proctor, Kaiser, Kutz. *Chaos as an intermittently forced linear system*. Nature Communications, 2017. [[DOI](https://doi.org/10.1038/s41467-017-00030-8)][[bibitem](readme/refs/Brunton2017.bib)].
135
+
***Parametric DMD:**Andreuzzi, Demo, Rozza. *A dynamic mode decomposition extension for the forecasting of parametric dynamical systems*. 2021. [[DOI](https://doi.org/10.1137/22M1481658)][[bibitem](readme/refs/Andreuzzi2021.bib)].
136
+
***Extended DMD:**Williams, Rowley, Kevrekidis. *A kernel-based method for data-driven koopman spectral analysis*. Journal of Computational Dynamics, 2015. [[DOI](https://doi.org/10.3934/jcd.2015005)][[bibitem](readme/refs/Williams2015.bib)].
137
+
***LANDO:**Baddoo, Herrmann, McKeon, Brunton. *Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization*. Proceedings of the Royal Society A, 2022. [[DOI](https://doi.org/10.1098/rspa.2021.0830)][[bibitem](readme/refs/Baddoo2022.bib)].
138
+
139
+
### Implementation Tools and Preprocessing
140
140
* Gavish, Donoho. *The optimal hard threshold for singular values is 4/sqrt(3)*. IEEE Transactions on Information Theory, 2014. [[DOI](https://doi.org/10.1109/TIT.2014.2323359)][[bibitem](readme/refs/Gavish2014.bib)].
141
141
* Matsumoto, Indinger. *On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least Squares*. 2017. [[arXiv](https://arxiv.org/abs/1703.11004)][[bibitem](readme/refs/Matsumoto2017.bib)].
142
142
* Hirsh, Harris, Kutz, Brunton. *Centering data improves the dynamic mode decomposition*. SIAM Journal on Applied Dynamical Systems, 2020. [[DOI](https://doi.org/10.1137/19M1289881)][[bibitem](readme/refs/Hirsh2020.bib)]
0 commit comments