Skip to content

Commit 3d8f150

Browse files
committed
RBF class and documentation
1 parent f8465da commit 3d8f150

File tree

3 files changed

+279
-1
lines changed

3 files changed

+279
-1
lines changed

docs/source/code.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ Code Documentation
88

99
affine
1010
freeform
11+
radial
1112
params
1213
filehandler
1314
openfhandler

pygem/__init__.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11

2-
__all__ = ['affine', 'filehandler', 'freeform', 'openfhandler', 'params', 'stlhandler', 'unvhandler', 'vtkhandler', 'igeshandler', 'utils', 'gui']
2+
__all__ = ['affine', 'filehandler', 'freeform', 'radial', 'openfhandler', 'params', 'stlhandler', 'unvhandler', 'vtkhandler', 'igeshandler', 'utils', 'gui']
33

44
from . import affine
55
from . import freeform
6+
from . import radial
67
from . import filehandler
78
from . import openfhandler
89
from . import params

pygem/radial.py

Lines changed: 276 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,276 @@
1+
"""
2+
Module focused on the implementation of the Radial Basis Functions interpolation technique.
3+
This technique is still based on the use of a set of parameters, the so-called control points,
4+
as for FFD, but RBF is interpolatory. Another important key point of RBF strategy relies in the
5+
way we can locate the control points: in fact, instead of FFD where control points need to be
6+
placed inside a regular lattice, with RBF we hano no more limitations. So we have the possibility
7+
to perform localized control points refiniments.
8+
The module is analogous to the freeform one.
9+
10+
:Theoretical Insight:
11+
12+
As reference please consult M. D. Buhmann. Radial Basis Functions, volume 12 of Cambridge
13+
monographs on applied and computational mathematics. Cambridge University Press, UK, 2003.
14+
RBF shape parametrization technique is based on the definition of a map,
15+
:math:`\\mathcal{M}(\\boldsymbol{x}) : \\mathbb{R}^n \\rightarrow \\mathbb{R}^n`, that allows the
16+
possibility of transferring data across non-matching grids and facing the dynamic mesh handling.
17+
The map introduced is defines as follows
18+
19+
.. math::
20+
\\mathcal{M}(\\boldsymbol{x}) = p(\\boldsymbol{x}) + \\sum_{i=1}^{\\mathcal{N}_C} \\gamma_i
21+
\\varphi(\\| \\boldsymbol{x} - \\boldsymbol{x_{C_i}} \\|)
22+
23+
where :math:`p(\\boldsymbol{x})` is a low_degree polynomial term, :math:`\\gamma_i` is the weight,
24+
corresponding to the a-priori selected :math:`\\mathcal{N}_C` control points, associated to the
25+
:math:`i`-th basis function, and :math:`\\varphi(\\| \\boldsymbol{x} - \\boldsymbol{x_{C_i}} \\|)`
26+
a radial function based on the Euclidean distance between the control points position
27+
:math:`\\boldsymbol{x_{C_i}}` and :math:`\\boldsymbol{x}`. A radial basis function, generally, is
28+
a real-valued function whose value depends only on the distance from the origin, so that
29+
:math:`\\varphi(\\boldsymbol{x}) = \\tilde{\\varphi}(\\| \\boldsymbol{x} \\|)`.
30+
31+
The matrix version of the formula above is:
32+
33+
.. math::
34+
\\mathcal{M}(\\boldsymbol{x}) = \\boldsymbol{c} + \\boldsymbol{Q}\\boldsymbol{x} +
35+
\\boldsymbol{W^T}\\boldsymbol{d}(\\boldsymbol{x})
36+
37+
The idea is that after the computation of the weights and the polynomial terms from the coordinates
38+
of the control points before and after the deformation, we can deform all the points of the mesh
39+
accordingly.
40+
Among the most common used radial basis functions for modelling 2D and 3D shapes, we consider
41+
Gaussian splines, Multi-quadratic biharmonic splines, Inverted multi-quadratic biharmonic splines,
42+
Thin-plate splines and Beckert and Wendland :math:`C^2` basis all defined and implemented below.
43+
"""
44+
import os
45+
import params as rbfp
46+
import numpy as np
47+
from mpl_toolkits.mplot3d import axes3d
48+
import matplotlib.pyplot as plt
49+
50+
51+
class RBF(object):
52+
"""
53+
Class that handles the Radial Basis Functions interpolation on the mesh points.
54+
55+
:param RBFParameters rbf_parameters: parameters of the RBF.
56+
:param numpy.ndarray original_mesh_points: coordinates of the original points of the mesh.
57+
58+
:cvar RBFParameters parameters: parameters of the RBF.
59+
:cvar numpy.ndarray original_mesh_points: coordinates of the original points of the mesh.
60+
The shape is `n_points`-by-3.
61+
:cvar numpy.ndarray modified_mesh_points: coordinates of the points of the deformed mesh.
62+
The shape is `n_points`-by-3.
63+
:cvar dict bases: a dictionary that associates the names of the basis functions
64+
implemented to the actual implementation.
65+
:cvar numpy.matrix weights: the matrix formed by the weights corresponding to the a-priori
66+
selected N control points, associated to the basis functions and c and Q terms that
67+
describe the polynomial of order one p(x) = c + Qx. The shape is
68+
(n_control_points+1+3)-by-3. It is computed internally.
69+
70+
:Example:
71+
72+
>>> import pygem.radial as rbf
73+
>>> import pygem.params as rbfp
74+
>>> import numpy as np
75+
76+
>>> rbf_parameters = rbfp.FFDParameters()
77+
>>> rbf_parameters.read_parameters('tests/test_datasets/parameters_rbf_cube.prm')
78+
79+
>>> nx, ny, nz = (20, 20, 20)
80+
>>> mesh = np.zeros((nx * ny * nz, 3))
81+
>>> xv = np.linspace(0, 1, nx)
82+
>>> yv = np.linspace(0, 1, ny)
83+
>>> zv = np.linspace(0, 1, nz)
84+
>>> z, y, x = np.meshgrid(zv, yv, xv)
85+
>>> mesh = np.array([x.ravel(), y.ravel(), z.ravel()])
86+
>>> original_mesh_points = mesh.T
87+
88+
>>> radial_trans = rbf.RBF(rbf_parameters, original_mesh_points)
89+
>>> radial_trans.perform()
90+
>>> new_mesh_points = radial_trans.modified_mesh_points
91+
"""
92+
def __init__(self, rbf_parameters, original_mesh_points):
93+
self.parameters = rbf_parameters
94+
self.original_mesh_points = original_mesh_points
95+
self.modified_mesh_points = None
96+
97+
self.bases = {
98+
'gaussian_spline': self.gaussian_spline,
99+
'multi_quadratic_biharmonic_spline': self.multi_quadratic_biharmonic_spline,
100+
'inv_multi_quadratic_biharmonic_spline': self.inv_multi_quadratic_biharmonic_spline,
101+
'thin_plate_spline': self.thin_plate_spline,
102+
'beckert_wendland_c2_basis': self.beckert_wendland_c2_basis
103+
}
104+
105+
# to make the str callable we have to use a dictionary with all the implemented radial basis functions
106+
if params.basis in self.bases:
107+
self.basis = self.bases[params.basis]
108+
else:
109+
raise NameError('The name of the basis function in the parameters file is not correct ' + \
110+
'or not implemented. Check the documentation for all the available functions.')
111+
112+
self.weights = self._get_weights(self.parameters.original_control_points, \
113+
self.parameters.deformed_control_points)
114+
115+
116+
@staticmethod
117+
def gaussian_spline(X, r):
118+
"""
119+
It implements the following formula:
120+
121+
.. math::
122+
\\varphi(\\| \\boldsymbol{x} \\|) = e^{-\\frac{\\| \\boldsymbol{x} \\|^2}{r^2}}
123+
124+
:param numpy.ndarray X: the vector x in the formula above.
125+
:param float r: the parameter r in the formula above.
126+
127+
:return: result: the result of the formula above.
128+
:rtype: float
129+
"""
130+
norm = np.linalg.norm(X)
131+
result = np.exp( -(norm * norm) / (r * r) )
132+
return result
133+
134+
135+
@staticmethod
136+
def multi_quadratic_biharmonic_spline(X, r):
137+
"""
138+
It implements the following formula:
139+
140+
.. math::
141+
\\varphi(\\| \\boldsymbol{x} \\|) = \\sqrt{\\| \\boldsymbol{x} \\|^2 + r^2}
142+
143+
:param numpy.ndarray X: the vector x in the formula above.
144+
:param float r: the parameter r in the formula above.
145+
146+
:return: result: the result of the formula above.
147+
:rtype: float
148+
"""
149+
norm = np.linalg.norm(X)
150+
result = np.sqrt( (norm * norm) + (r * r) )
151+
return result
152+
153+
154+
@staticmethod
155+
def inv_multi_quadratic_biharmonic_spline(X, r):
156+
"""
157+
It implements the following formula:
158+
159+
.. math::
160+
\\varphi(\\| \\boldsymbol{x} \\|) = (\\| \\boldsymbol{x} \\|^2 + r^2 )^{-\\frac{1}{2}}
161+
162+
:param numpy.ndarray X: the vector x in the formula above.
163+
:param float r: the parameter r in the formula above.
164+
165+
:return: result: the result of the formula above.
166+
:rtype: float
167+
"""
168+
result = 1.0/multi_quadratic_biharmonic_spline(X, r)
169+
return result
170+
171+
172+
@staticmethod
173+
def thin_plate_spline(X, r):
174+
"""
175+
It implements the following formula:
176+
177+
.. math::
178+
\\varphi(\\| \\boldsymbol{x} \\|) = \\left\\| \\frac{\\boldsymbol{x} }{r} \\right\\|^2
179+
\\ln \\left\\| \\frac{\\boldsymbol{x} }{r} \\right\\|
180+
181+
:param numpy.ndarray X: the vector x in the formula above.
182+
:param float r: the parameter r in the formula above.
183+
184+
:return: result: the result of the formula above.
185+
:rtype: float
186+
"""
187+
arg = X/r
188+
norm = np.linalg.norm(arg)
189+
result = norm * norm
190+
if norm > 0:
191+
result *= np.log(norm)
192+
return result
193+
194+
195+
@staticmethod
196+
def beckert_wendland_c2_basis(X, r):
197+
"""
198+
It implements the following formula:
199+
200+
.. math::
201+
\\varphi(\\| \\boldsymbol{x} \\|) = \\left( 1 - \\frac{\\| \\boldsymbol{x} \\|}{r} \\right)^4_+
202+
\\left( 4 \\frac{\\| \\boldsymbol{x} \\|}{r} + 1 \\right)
203+
204+
:param numpy.ndarray X: the vector x in the formula above.
205+
:param float r: the parameter r in the formula above.
206+
207+
:return: result: the result of the formula above.
208+
:rtype: float
209+
"""
210+
norm = np.linalg.norm(X)
211+
arg = norm / r
212+
first = 0
213+
if (1 - arg) > 0:
214+
first = np.power((1 - arg), 4)
215+
second = (4 * arg) + 1
216+
result = first * second
217+
return result
218+
219+
220+
def _distance_matrix(self, X1, X2):
221+
"""
222+
This private method returns the following matrix:
223+
:math:`\\boldsymbol{D_{ij}} = \\varphi(\\| \\boldsymbol{x_i} - \\boldsymbol{y_j} \\|)`
224+
225+
:param numpy.ndarray X1: the vector x in the formula above.
226+
:param numpy.ndarray X2: the vector y in the formula above.
227+
228+
:return: matrix: the matrix D.
229+
:rtype: numpy.ndarray
230+
"""
231+
m, n = X1.shape[0], X2.shape[0]
232+
matrix = np.zeros(shape=(m, n))
233+
for i in range(0, m):
234+
for j in range(0, n):
235+
matrix[i][j] = self.basis(X1[i] - X2[j], self.parameters.radius)
236+
return matrix
237+
238+
239+
def _get_weights(self, X, Y):
240+
"""
241+
This private method, given the original control points and the deformed ones, returns the matrix
242+
with the weights and the polynomial terms, that is :math:`W`, :math:`c^T` and :math:`Q^T`.
243+
The shape is (n_control_points+1+3)-by-3.
244+
245+
:param numpy.ndarray X: it is an n_control_points-by-3 array with the
246+
coordinates of the original interpolation control points before the deformation.
247+
:param numpy.ndarray Y: it is an n_control_points-by-3 array with the
248+
coordinates of the interpolation control points after the deformation.
249+
250+
:return: weights: the matrix with the weights and the polynomial terms.
251+
:rtype: numpy.matrix
252+
"""
253+
n_points = X.shape[0]
254+
dim = X.shape[1]
255+
identity = np.ones(n_points).reshape(n_points, 1)
256+
dist = self._distance_matrix(X, X)
257+
H = np.bmat([[dist, identity, X], [identity.T, np.zeros((1, 1)), np.zeros((1, dim))], \
258+
[X.T, np.zeros((dim, 1)), np.zeros((dim, dim))]])
259+
rhs = np.bmat([[Y], [np.zeros((1, dim))], [np.zeros((dim, dim))]])
260+
inv_H = np.linalg.inv(H)
261+
weights = np.dot(inv_H, rhs)
262+
return weights
263+
264+
265+
def perform(self):
266+
"""
267+
This method performs the deformation of the mesh points. After the execution
268+
it sets `self.modified_mesh_points`.
269+
"""
270+
n_points = self.original_mesh_points.shape[0]
271+
dim = self.original_mesh_points.shape[1]
272+
dist = self._distance_matrix(self.original_mesh_points, self.parameters.original_control_points)
273+
identity = np.ones(n_points).reshape(n_points, 1)
274+
H = np.bmat([[dist, identity, self.original_mesh_points]])
275+
self.modified_mesh_points = np.asarray(np.dot(H, self.weights))
276+

0 commit comments

Comments
 (0)