@@ -4,7 +4,7 @@ ImgX-DiffSeg is a Jax-based deep learning toolkit using Flax for biomedical imag
44
55This repository includes the implementation of the following work
66
7- - [ A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models] ( https://arxiv .org/abs/2308.16355 )
7+ - [ A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models] ( https://melba-journal .org/2023:016 )
88- [ Importance of Aligning Training Strategy with Evaluation for Diffusion Models in 3D Multiclass Segmentation] ( https://arxiv.org/abs/2303.06040 )
99
1010:construction : ** The codebase is still under active development for more enhancements and
@@ -29,7 +29,7 @@ applications.** :construction:
2929features or [ reach out] ( https://orcid.org/0000-0002-1184-7421 ) for collaborations. :mailbox :
3030
3131<div >
32- <img src =" images/diffusion_training_strategy_diagram .png " width =" 600 " alt =" diffusion_training_strategy_diagram " ></img >
32+ <img src =" images/melba_graphic_abstract .png " width =" 600 " alt =" graphic_abstract " ></img >
3333</div >
3434
3535## Features
@@ -54,7 +54,7 @@ See the [readme](imgx_datasets/README.md) for further details.
5454 prediction ([ x0-parameterization] ( https://arxiv.org/abs/2102.09672 ) ).
5555 - [ Importance sampling] ( https://arxiv.org/abs/2102.09672 ) for timestep.
5656 - Recycling training strategies, including [ xt-recycling] ( https://arxiv.org/abs/2303.06040 ) and
57- [ xT-recycling] ( https://arxiv .org/abs/2308.16355 ) .
57+ [ xT-recycling] ( https://melba-journal .org/2023:016 ) .
5858 - Self-conditioning training strategies, including
5959 [ Chen et al. 2022] ( https://arxiv.org/abs/2208.04202 ) and
6060 [ Watson et al. 2023.] ( https://www.nature.com/articles/s41586-023-06415-8 ) .
@@ -311,13 +311,17 @@ London and the University of Manchester, and Cloud TPUs from Google's TPU Resear
311311If you find the code base and method useful in your research, please cite the relevant paper:
312312
313313``` bibtex
314- @article{fu2023recycling,
315- title={A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models},
316- author={Fu, Yunguan and Li, Yiwen and Saeed, Shaheer U and Clarkson, Matthew J and Hu, Yipeng},
317- journal={arXiv preprint arXiv:2308.16355},
318- year={2023},
319- doi={10.48550/arXiv.2308.16355},
320- url={https://arxiv.org/abs/2308.16355},
314+ @article{melba:2023:016:fu,
315+ title = "A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models",
316+ author = "Fu, Yunguan and Li, Yiwen and Saeed, Shaheer U. and Clarkson, Matthew J. and Hu, Yipeng",
317+ journal = "Machine Learning for Biomedical Imaging",
318+ volume = "2",
319+ issue = "Special Issue for Generative Models",
320+ year = "2023",
321+ pages = "507--546",
322+ issn = "2766-905X",
323+ doi = "https://doi.org/10.59275/j.melba.2023-fbe4",
324+ url = "https://melba-journal.org/2023:016"
321325}
322326
323327@article{fu2023importance,
0 commit comments