@@ -56,13 +56,38 @@ def train(net, train_data):
5656
5757
5858if __name__ == "__main__" :
59+ # First configuration we tried.
5960 layers = [
6061 Layer (784 , 16 , LeakyReLU ()),
6162 Layer (16 , 16 , LeakyReLU ()),
6263 Layer (16 , 10 , LeakyReLU ()),
6364 ]
6465 net = NeuralNetwork (layers , MSELoss (), 0.001 )
6566
67+ # # Use a Sigmoid as the final layer (don't forget to import it!)
68+ # layers = [
69+ # Layer(784, 16, LeakyReLU()),
70+ # Layer(16, 16, LeakyReLU()),
71+ # Layer(16, 10, Sigmoid()),
72+ # ]
73+ # net = NeuralNetwork(layers, MSELoss(), 0.001)
74+
75+ # # Use Sigmoid at the end and CrossEntropyLoss (import them!)
76+ # layers = [
77+ # Layer(784, 16, LeakyReLU()),
78+ # Layer(16, 16, LeakyReLU()),
79+ # Layer(16, 10, Sigmoid()),
80+ # ]
81+ # net = NeuralNetwork(layers, CrossEntropyLoss(), 0.001)
82+
83+ # # Only LeakyReLU's and the CrossEntropyLoss (import the loss!)
84+ # layers = [
85+ # Layer(784, 16, LeakyReLU()),
86+ # Layer(16, 16, LeakyReLU()),
87+ # Layer(16, 10, Sigmoid()),
88+ # ]
89+ # net = NeuralNetwork(layers, CrossEntropyLoss(), 0.001)
90+
6691 test_data = load_data (TEST_FILE , delimiter = "," , dtype = int )
6792 accuracy = test (net , test_data )
6893 print (f"Accuracy is { 100 * accuracy :.2f} %" ) # Expected to be around 10%
0 commit comments