@@ -201,7 +201,7 @@ static void print_sample_weights(TransformerWeights *w){
201201
202202// ////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
203203
204- struct  llama_vocab  {
204+ struct  my_llama_vocab  {
205205    using  id    = int32_t ;
206206    using  token = std::string;
207207    using  ttype = llama_token_type;
@@ -525,7 +525,7 @@ static std::string llama_escape_whitespaces(const std::string & text) {
525525    return  out.str ();
526526}
527527
528- static  void  load_vocab (const  char  * filename, const  Config * config, struct  llama_vocab  * vocab) {
528+ static  void  load_vocab (const  char  * filename, const  Config * config, struct  my_llama_vocab  * vocab) {
529529    if  (is_ggml_file (filename)) {
530530        LOG_INF (" %s: Loading vocabulary from gguf file %s\n " 
531531        struct  ggml_context  * ctx_data = NULL ;
@@ -583,13 +583,13 @@ static void load_vocab(const char * filename, const Config * config, struct llam
583583        const  int   n_vocab = config->vocab_size ;
584584        /*  uint32_t max_token_length =  */ read_u32 (); //  unused
585585        vocab->id_to_token .resize (n_vocab);
586-         for  (llama_vocab ::id id=0 ; id<n_vocab; ++id) {
586+         for  (my_llama_vocab ::id id=0 ; id<n_vocab; ++id) {
587587            float_t  score = file.read_f32 ();
588588            uint32_t  len = file.read_u32 ();
589589            std::string text = file.read_string (len);
590590
591591            unsigned  char  byte_val;
592-             llama_vocab ::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
592+             my_llama_vocab ::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
593593            if  (id == UNKNOWN_TOKEN_ID) {
594594                text = " <unk>" 
595595                type = LLAMA_TOKEN_TYPE_UNKNOWN;
@@ -631,7 +631,7 @@ static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const floa
631631}
632632
633633static  void  save_as_llama_model (
634-     struct  llama_vocab  * vocab, struct  my_llama_model  * model, TransformerWeights* w, const  char  * filename
634+     struct  my_llama_vocab  * vocab, struct  my_llama_model  * model, TransformerWeights* w, const  char  * filename
635635) {
636636    //  convert AK weights into GG weights one by one.
637637    //  w->token_embedding_table -> model->tok_embeddings
@@ -671,7 +671,7 @@ static void save_as_llama_model(
671671    std::vector<const  char *> tokens;
672672    std::vector<float > scores;
673673    std::vector<llama_token_type> token_types;
674-     for  (const  llama_vocab ::token_data & token_data : vocab->id_to_token ) {
674+     for  (const  my_llama_vocab ::token_data & token_data : vocab->id_to_token ) {
675675        tokens.push_back (token_data.text .c_str ());
676676        scores.push_back (token_data.score );
677677        token_types.push_back (token_data.type );
@@ -905,7 +905,7 @@ int main(int argc, char ** argv) {
905905        fclose (file);
906906    }
907907
908-     struct  llama_vocab  vocab;
908+     struct  my_llama_vocab  vocab;
909909    load_vocab (params.fn_vocab_model , &config, &vocab);
910910
911911    struct  my_llama_model  model;
0 commit comments