@@ -61,18 +61,18 @@ def parse_train_configs():
61
61
help = 'If true, dont evaluate the model on the val set' )
62
62
parser .add_argument ('--num_samples' , type = int , default = None ,
63
63
help = 'Take a subset of the dataset to run and debug' )
64
- parser .add_argument ('--num_workers' , type = int , default = 8 ,
64
+ parser .add_argument ('--num_workers' , type = int , default = 4 ,
65
65
help = 'Number of threads for loading data' )
66
66
parser .add_argument ('--batch_size' , type = int , default = 4 ,
67
67
help = 'mini-batch size (default: 4), this is the total'
68
68
'batch size of all GPUs on the current node when using'
69
69
'Data Parallel or Distributed Data Parallel' )
70
70
parser .add_argument ('--print_freq' , type = int , default = 50 , metavar = 'N' ,
71
71
help = 'print frequency (default: 50)' )
72
- parser .add_argument ('--tensorboard_freq' , type = int , default = 20 , metavar = 'N' ,
73
- help = 'frequency of saving tensorboard (default: 20 )' )
74
- parser .add_argument ('--checkpoint_freq' , type = int , default = 2 , metavar = 'N' ,
75
- help = 'frequency of saving checkpoints (default: 2 )' )
72
+ parser .add_argument ('--tensorboard_freq' , type = int , default = 50 , metavar = 'N' ,
73
+ help = 'frequency of saving tensorboard (default: 50 )' )
74
+ parser .add_argument ('--checkpoint_freq' , type = int , default = 5 , metavar = 'N' ,
75
+ help = 'frequency of saving checkpoints (default: 5 )' )
76
76
####################################################################
77
77
############## Training strategy ####################
78
78
####################################################################
@@ -83,14 +83,14 @@ def parse_train_configs():
83
83
help = 'number of total epochs to run' )
84
84
parser .add_argument ('--lr_type' , type = str , default = 'cosin' ,
85
85
help = 'the type of learning rate scheduler (cosin or multi_step)' )
86
- parser .add_argument ('--lr' , type = float , default = 0.0025 , metavar = 'LR' ,
86
+ parser .add_argument ('--lr' , type = float , default = 0.001 , metavar = 'LR' ,
87
87
help = 'initial learning rate' )
88
88
parser .add_argument ('--minimum_lr' , type = float , default = 1e-7 , metavar = 'MIN_LR' ,
89
89
help = 'minimum learning rate during training' )
90
90
parser .add_argument ('--momentum' , type = float , default = 0.949 , metavar = 'M' ,
91
91
help = 'momentum' )
92
92
parser .add_argument ('-wd' , '--weight_decay' , type = float , default = 5e-4 , metavar = 'WD' ,
93
- help = 'weight decay (default: 1e-6 )' )
93
+ help = 'weight decay (default: 5e-4 )' )
94
94
parser .add_argument ('--optimizer_type' , type = str , default = 'adam' , metavar = 'OPTIMIZER' ,
95
95
help = 'the type of optimizer, it can be sgd or adam' )
96
96
parser .add_argument ('--burn_in' , type = int , default = 50 , metavar = 'N' ,
0 commit comments