@@ -362,8 +362,13 @@ predictor = HybridUni(
362362
363363predictor.create_cnnrnn(
364364 optimizer: str = ' adam' ,
365+ optimizer_args: dict = None ,
365366 loss: str = ' mean_squared_error' ,
366367 metrics: str = ' mean_squared_error' ,
368+ conv_block_one: int = 1 ,
369+ conv_block_two: int = 1 ,
370+ rnn_block_one: int = 1 ,
371+ rnn_block_two: int = 1 ,
367372 layer_config =
368373 {
369374 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -376,8 +381,13 @@ predictor.create_cnnrnn(
376381
377382predictor.create_cnnlstm(
378383 optimizer: str = ' adam' ,
384+ optimizer_args: dict = None ,
379385 loss: str = ' mean_squared_error' ,
380386 metrics: str = ' mean_squared_error' ,
387+ conv_block_one: int = 1 ,
388+ conv_block_two: int = 1 ,
389+ lstm_block_one: int = 1 ,
390+ lstm_block_two: int = 1 ,
381391 layer_config =
382392 {
383393 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -390,8 +400,13 @@ predictor.create_cnnlstm(
390400
391401predictor.create_cnngru(
392402 optimizer: str = ' adam' ,
403+ optimizer_args: dict = None ,
393404 loss: str = ' mean_squared_error' ,
394405 metrics: str = ' mean_squared_error' ,
406+ conv_block_one: int = 1 ,
407+ conv_block_two: int = 1 ,
408+ gru_block_one: int = 1 ,
409+ gru_block_two: int = 1 ,
395410 layer_config =
396411 {
397412 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -404,8 +419,13 @@ predictor.create_cnngru(
404419
405420predictor.create_cnnbirnn(
406421 optimizer: str = ' adam' ,
422+ optimizer_args: dict = None ,
407423 loss: str = ' mean_squared_error' ,
408424 metrics: str = ' mean_squared_error' ,
425+ conv_block_one: int = 1 ,
426+ conv_block_two: int = 1 ,
427+ birnn_block_one: int = 1 ,
428+ rnn_block_one: int = 1 ,
409429 layer_config =
410430 {
411431 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -418,8 +438,13 @@ predictor.create_cnnbirnn(
418438
419439predictor.create_cnnbilstm(
420440 optimizer: str = ' adam' ,
441+ optimizer_args: dict = None ,
421442 loss: str = ' mean_squared_error' ,
422443 metrics: str = ' mean_squared_error' ,
444+ conv_block_one: int = 1 ,
445+ conv_block_two: int = 1 ,
446+ bilstm_block_one: int = 1 ,
447+ lstm_block_one: int = 1 ,
423448 layer_config =
424449 {
425450 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -432,8 +457,13 @@ predictor.create_cnnbilstm(
432457
433458predictor.create_cnnbigru(
434459 optimizer: str = ' adam' ,
460+ optimizer_args: dict = None ,
435461 loss: str = ' mean_squared_error' ,
436462 metrics: str = ' mean_squared_error' ,
463+ conv_block_one: int = 1 ,
464+ conv_block_two: int = 1 ,
465+ bigru_block_one: int = 1 ,
466+ gru_block_one: int = 1 ,
437467 layer_config =
438468 {
439469 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -491,8 +521,12 @@ predictor = PureMulti(steps_past: int, steps_future: int, data = DataFrame(), fe
491521
492522predictor.create_mlp(
493523 optimizer: str = ' adam' ,
524+ optimizer_args: dict = None ,
494525 loss: str = ' mean_squared_error' ,
495526 metrics: str = ' mean_squared_error' ,
527+ dense_block_one: int = 1 ,
528+ dense_block_two: int = 1 ,
529+ dense_block_three: int = 1 ,
496530 layer_config: dict =
497531 {
498532 ' layer0' : (50 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -503,8 +537,12 @@ predictor.create_mlp(
503537
504538predictor.create_rnn(
505539 optimizer: str = ' adam' ,
540+ optimizer_args: dict = None ,
506541 loss: str = ' mean_squared_error' ,
507542 metrics: str = ' mean_squared_error' ,
543+ rnn_block_one: int = 1 ,
544+ rnn_block_two: int = 1 ,
545+ rnn_block_three: int = 1 ,
508546 layer_config: dict =
509547 {
510548 ' layer0' : (40 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -515,8 +553,12 @@ predictor.create_rnn(
515553
516554predictor.create_lstm(
517555 optimizer: str = ' adam' ,
556+ optimizer_args: dict = None ,
518557 loss: str = ' mean_squared_error' ,
519558 metrics: str = ' mean_squared_error' ,
559+ lstm_block_one: int = 1 ,
560+ lstm_block_two: int = 1 ,
561+ lstm_block_three: int = 1 ,
520562 layer_config: dict =
521563 {
522564 ' layer0' : (40 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -527,8 +569,12 @@ predictor.create_lstm(
527569
528570predictor.create_gru(
529571 optimizer: str = ' adam' ,
572+ optimizer_args: dict = None ,
530573 loss: str = ' mean_squared_error' ,
531574 metrics: str = ' mean_squared_error' ,
575+ gru_block_one: int = 1 ,
576+ gru_block_two: int = 1 ,
577+ gru_block_three: int = 1 ,
532578 layer_config: dict =
533579 {
534580 ' layer0' : (40 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -539,8 +585,12 @@ predictor.create_gru(
539585
540586predictor.create_cnn(
541587 optimizer: str = ' adam' ,
588+ optimizer_args: dict = None ,
542589 loss: str = ' mean_squared_error' ,
543590 metrics: str = ' mean_squared_error' ,
591+ conv_block_one: int = 1 ,
592+ conv_block_two: int = 1 ,
593+ dense_block_one: int = 1 ,
544594 layer_config: dict =
545595 {
546596 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -552,8 +602,11 @@ predictor.create_cnn(
552602
553603predictor.create_birnn(
554604 optimizer: str = ' adam' ,
605+ optimizer_args: dict = None ,
555606 loss: str = ' mean_squared_error' ,
556607 metrics: str = ' mean_squared_error' ,
608+ birnn_block_one: int = 1 ,
609+ rnn_block_one: int = 1 ,
557610 layer_config: dict =
558611 {
559612 ' layer0' : (50 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -563,8 +616,11 @@ predictor.create_birnn(
563616
564617predictor.create_bilstm(
565618 optimizer: str = ' adam' ,
619+ optimizer_args: dict = None ,
566620 loss: str = ' mean_squared_error' ,
567621 metrics: str = ' mean_squared_error' ,
622+ bilstm_block_one: int = 1 ,
623+ lstm_block_one: int = 1 ,
568624 layer_config: dict =
569625 {
570626 ' layer0' : (50 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -574,8 +630,11 @@ predictor.create_bilstm(
574630
575631predictor.create_bigru(
576632 optimizer: str = ' adam' ,
633+ optimizer_args: dict = None ,
577634 loss: str = ' mean_squared_error' ,
578635 metrics: str = ' mean_squared_error' ,
636+ bigru_block_one: int = 1 ,
637+ gru_block_one: int = 1 ,
579638 layer_config: dict =
580639 {
581640 ' layer0' : (50 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -585,8 +644,13 @@ predictor.create_bigru(
585644
586645predictor.create_encdec_rnn(
587646 optimizer: str = ' adam' ,
647+ optimizer_args: dict = None ,
588648 loss: str = ' mean_squared_error' ,
589649 metrics: str = ' mean_squared_error' ,
650+ enc_rnn_block_one: int = 1 ,
651+ enc_rnn_block_two: int = 1 ,
652+ dec_rnn_block_one: int = 1 ,
653+ dec_rnn_block_two: int = 1 ,
590654 layer_config: dict =
591655 {
592656 ' layer0' : (100 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -598,8 +662,13 @@ predictor.create_encdec_rnn(
598662
599663predictor.create_encdec_lstm(
600664 optimizer: str = ' adam' ,
665+ optimizer_args: dict = None ,
601666 loss: str = ' mean_squared_error' ,
602667 metrics: str = ' mean_squared_error' ,
668+ enc_lstm_block_one: int = 1 ,
669+ enc_lstm_block_two: int = 1 ,
670+ dec_lstm_block_one: int = 1 ,
671+ dec_lstm_block_two: int = 1 ,
603672 layer_config: dict =
604673 {
605674 ' layer0' : (100 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -611,8 +680,13 @@ predictor.create_encdec_lstm(
611680
612681predictor.create_encdec_cnn(
613682 optimizer: str = ' adam' ,
683+ optimizer_args: dict = None ,
614684 loss: str = ' mean_squared_error' ,
615685 metrics: str = ' mean_squared_error' ,
686+ enc_conv_block_one: int = 1 ,
687+ enc_conv_block_two: int = 1 ,
688+ dec_gru_block_one: int = 1 ,
689+ dec_gru_block_two: int = 1 ,
616690 layer_config: dict =
617691 {
618692 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -625,8 +699,13 @@ predictor.create_encdec_cnn(
625699
626700predictor.create_encdec_gru(
627701 optimizer: str = ' adam' ,
702+ optimizer_args: dict = None ,
628703 loss: str = ' mean_squared_error' ,
629704 metrics: str = ' mean_squared_error' ,
705+ enc_gru_block_one: int = 1 ,
706+ enc_gru_block_two: int = 1 ,
707+ dec_gru_block_one: int = 1 ,
708+ dec_gru_block_two: int = 1 ,
630709 layer_config: dict =
631710 {
632711 ' layer0' : (100 , ' relu' , 0.0 , 0.0 ), # (neurons, activation, regularization, dropout)
@@ -680,8 +759,13 @@ predictor = HybridMulti(sub_seq: int, steps_past: int, steps_future: int, data =
680759
681760predictor.create_cnnrnn(
682761 optimizer: str = ' adam' ,
762+ optimizer_args: dict = None ,
683763 loss: str = ' mean_squared_error' ,
684764 metrics: str = ' mean_squared_error' ,
765+ conv_block_one: int = 1 ,
766+ conv_block_two: int = 1 ,
767+ rnn_block_one: int = 1 ,
768+ rnn_block_two: int = 1 ,
685769 layer_config =
686770 {
687771 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -694,8 +778,13 @@ predictor.create_cnnrnn(
694778
695779predictor.create_cnnlstm(
696780 optimizer: str = ' adam' ,
781+ optimizer_args: dict = None ,
697782 loss: str = ' mean_squared_error' ,
698783 metrics: str = ' mean_squared_error' ,
784+ conv_block_one: int = 1 ,
785+ conv_block_two: int = 1 ,
786+ lstm_block_one: int = 1 ,
787+ lstm_block_two: int = 1 ,
699788 layer_config =
700789 {
701790 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -708,8 +797,13 @@ predictor.create_cnnlstm(
708797
709798predictor.create_cnngru(
710799 optimizer: str = ' adam' ,
800+ optimizer_args: dict = None ,
711801 loss: str = ' mean_squared_error' ,
712802 metrics: str = ' mean_squared_error' ,
803+ conv_block_one: int = 1 ,
804+ conv_block_two: int = 1 ,
805+ gru_block_one: int = 1 ,
806+ gru_block_two: int = 1 ,
713807 layer_config =
714808 {
715809 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -722,8 +816,13 @@ predictor.create_cnngru(
722816
723817predictor.create_cnnbirnn(
724818 optimizer: str = ' adam' ,
819+ optimizer_args: dict = None ,
725820 loss: str = ' mean_squared_error' ,
726821 metrics: str = ' mean_squared_error' ,
822+ conv_block_one: int = 1 ,
823+ conv_block_two: int = 1 ,
824+ birnn_block_one: int = 1 ,
825+ rnn_block_one: int = 1 ,
727826 layer_config =
728827 {
729828 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -736,8 +835,13 @@ predictor.create_cnnbirnn(
736835
737836predictor.create_cnnbilstm(
738837 optimizer: str = ' adam' ,
838+ optimizer_args: dict = None ,
739839 loss: str = ' mean_squared_error' ,
740840 metrics: str = ' mean_squared_error' ,
841+ conv_block_one: int = 1 ,
842+ conv_block_two: int = 1 ,
843+ bilstm_block_one: int = 1 ,
844+ lstm_block_one: int = 1 ,
741845 layer_config =
742846 {
743847 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -750,8 +854,13 @@ predictor.create_cnnbilstm(
750854
751855predictor.create_cnnbigru(
752856 optimizer: str = ' adam' ,
857+ optimizer_args: dict = None ,
753858 loss: str = ' mean_squared_error' ,
754859 metrics: str = ' mean_squared_error' ,
860+ conv_block_one: int = 1 ,
861+ conv_block_two: int = 1 ,
862+ bigru_block_one: int = 1 ,
863+ gru_block_one: int = 1 ,
755864 layer_config =
756865 {
757866 ' layer0' : (64 , 1 , ' relu' , 0.0 , 0.0 ), # (filter_size, kernel_size, activation, regularization, dropout)
@@ -855,6 +964,14 @@ predictor = OptimizePureUni(steps_past=5, steps_future=10, data=data, scale='sta
855964 ' layer2' : (2 , ' relu' )
856965 }
857966 ],
967+ optimizer_args_range = [
968+ {
969+ ' learning_rate' : 0.02 ,
970+ },
971+ {
972+ ' learning_rate' : 0.0001 ,
973+ }
974+ ]
858975 optimization_target = ' minimize' , n_trials = 2 )
859976def create_fit_model (predictor : object , * args , ** kwargs ):
860977 # use optimizable create_fit_xxx method
@@ -912,6 +1029,14 @@ predictor = OptimizeHybridUni(sub_seq = 2, steps_past = 10, steps_future = 5, da
9121029 ' layer4' : (10 , ' relu' )
9131030 }
9141031 ],
1032+ optimizer_args_range = [
1033+ {
1034+ ' learning_rate' : 0.02 ,
1035+ },
1036+ {
1037+ ' learning_rate' : 0.0001 ,
1038+ }
1039+ ]
9151040 optimization_target = ' minimize' , n_trials = 2 )
9161041def create_fit_model (predictor : object , * args , ** kwargs ):
9171042 return predictor.create_fit_cnnlstm(* args, ** kwargs)
@@ -965,6 +1090,14 @@ predictor = OptimizePureMulti(
9651090 ' layer2' : (20 , ' sigmoid' )
9661091 }
9671092 ],
1093+ optimizer_args_range = [
1094+ {
1095+ ' learning_rate' : 0.02 ,
1096+ },
1097+ {
1098+ ' learning_rate' : 0.0001 ,
1099+ }
1100+ ]
9681101 optimization_target = ' minimize' , n_trials = 3 )
9691102def create_fit_model (predictor : object , * args , ** kwargs ):
9701103 return predictor.create_fit_lstm(* args, ** kwargs)
@@ -1027,6 +1160,14 @@ predictor = OptimizeHybridMulti(
10271160 ' layer4' : (5 , ' relu' )
10281161 }
10291162 ],
1163+ optimizer_args_range = [
1164+ {
1165+ ' learning_rate' : 0.02 ,
1166+ },
1167+ {
1168+ ' learning_rate' : 0.0001 ,
1169+ }
1170+ ]
10301171 optimization_target = ' minimize' , n_trials = 3 )
10311172def create_fit_model (predictor : object , * args , ** kwargs ):
10321173 return predictor.create_fit_cnnlstm(* args, ** kwargs)
@@ -1061,7 +1202,11 @@ predictor = OptimizePureMulti(...)
10611202 {... },
10621203 {... }
10631204 ],
1064- ... )
1205+ optimizer_args_range = [
1206+ {... },
1207+ {... },
1208+ ]
1209+ optimization_target = ' ...' , n_trials = x)
10651210def create_fit_model (predictor : object , * args , ** kwargs ): # seeker harness
10661211 return predictor.create_fit_xxx(* args, ** kwargs)
10671212
0 commit comments