|
| 1 | +from collections import deque |
| 2 | +from typing import List, Optional, Tuple |
| 3 | + |
| 4 | +from aoc.models.base import SolutionBase |
| 5 | + |
| 6 | + |
| 7 | +class Solution(SolutionBase): |
| 8 | + """Solution for Advent of Code 2023 - Day 20: Race Condition. |
| 9 | +
|
| 10 | + This class solves a puzzle about finding shortcuts in a racetrack maze. |
| 11 | + Part 1 finds valid 2-move cheats, while Part 2 finds valid 20-move cheats. |
| 12 | + Both parts count cheats that save a minimum number of steps. |
| 13 | +
|
| 14 | + Input format: |
| 15 | + - Grid representation of the racetrack where: |
| 16 | + * '#' represents walls |
| 17 | + * '.' represents valid path positions |
| 18 | + * 'S' marks the start position |
| 19 | + * 'E' marks the end position |
| 20 | +
|
| 21 | + The solution finds the shortest path from `S` to `E` and then identifies valid |
| 22 | + cheat moves that save steps by passing through walls. |
| 23 | +
|
| 24 | + This class inherits from `SolutionBase` and implements the required methods |
| 25 | + to parse input data and solve both parts of the puzzle. It provides helpers |
| 26 | + for path finding and cheat detection. |
| 27 | + """ |
| 28 | + |
| 29 | + def parse_data( |
| 30 | + self, data: List[str] |
| 31 | + ) -> Tuple[List[List[str]], Tuple[int, int], Tuple[int, int]]: |
| 32 | + """Parse input data into grid and start/end positions. |
| 33 | +
|
| 34 | + Args: |
| 35 | + data (List[str]): Raw input lines |
| 36 | +
|
| 37 | + Returns: |
| 38 | + Tuple[List[List[str]], Tuple[int, int], Tuple[int, int]]: |
| 39 | + Tuple containing (grid, start_position, end_position) |
| 40 | + """ |
| 41 | + grid, start, end = [], None, None |
| 42 | + for row in range(len(data)): |
| 43 | + row_data = list(data[row].strip()) |
| 44 | + grid.append(row_data) |
| 45 | + for col in range(len(row_data)): |
| 46 | + if row_data[col] == "S": |
| 47 | + start = (row, col) |
| 48 | + elif row_data[col] == "E": |
| 49 | + end = (row, col) |
| 50 | + |
| 51 | + return grid, start, end |
| 52 | + |
| 53 | + def find_shortest_path( |
| 54 | + self, grid: List[List[str]], start: Tuple[int, int], end: Tuple[int, int] |
| 55 | + ) -> Optional[List[Tuple[int, int]]]: |
| 56 | + """Find the shortest path from start to end in the grid. |
| 57 | +
|
| 58 | + Uses BFS to find the shortest path while avoiding walls. |
| 59 | +
|
| 60 | + Args: |
| 61 | + grid (List[List[str]]): The maze grid |
| 62 | + start (Tuple[int, int]): Starting position (row, col) |
| 63 | + end (Tuple[int, int]): Ending position (row, col) |
| 64 | +
|
| 65 | + Returns: |
| 66 | + Optional[List[Tuple[int, int]]]: List of positions in shortest path, |
| 67 | + or None if no path exists |
| 68 | + """ |
| 69 | + rows, cols = len(grid), len(grid[0]) |
| 70 | + queue = deque([(start, 0, [start])]) |
| 71 | + visited = {start} |
| 72 | + |
| 73 | + while queue: |
| 74 | + position, steps, path = queue.popleft() |
| 75 | + if position == end: |
| 76 | + return path |
| 77 | + |
| 78 | + row, col = position |
| 79 | + for dr, dc in [(0, 1), (1, 0), (0, -1), (-1, 0)]: |
| 80 | + new_row, new_col = row + dr, col + dc |
| 81 | + if ( |
| 82 | + 0 <= new_row < rows |
| 83 | + and 0 <= new_col < cols |
| 84 | + and grid[new_row][new_col] != "#" |
| 85 | + and (new_row, new_col) not in visited |
| 86 | + ): |
| 87 | + visited.add((new_row, new_col)) |
| 88 | + queue.append(((new_row, new_col), steps + 1, path + [(new_row, new_col)])) |
| 89 | + |
| 90 | + return None |
| 91 | + |
| 92 | + def find_cheat_pairs(self, path: List[Tuple[int, int]], savings: int, cheat_moves: int) -> int: |
| 93 | + """Find valid cheat moves that save the required number of steps. |
| 94 | +
|
| 95 | + Args: |
| 96 | + path (List[Tuple[int, int]]): The shortest path from start to end |
| 97 | + savings (int): Minimum number of steps a cheat must save |
| 98 | + cheat_moves (int): Maximum number of moves allowed for a cheat |
| 99 | +
|
| 100 | + Returns: |
| 101 | + int: Number of valid cheats found |
| 102 | + """ |
| 103 | + coords_steps = {coord: i for i, coord in enumerate(path)} |
| 104 | + cheats = 0 |
| 105 | + |
| 106 | + possible_ranges = [ |
| 107 | + (dy, dx, abs(dy) + abs(dx)) |
| 108 | + for dy in range(-cheat_moves, cheat_moves + 1) |
| 109 | + for dx in range(-cheat_moves, cheat_moves + 1) |
| 110 | + if 0 < abs(dy) + abs(dx) <= cheat_moves |
| 111 | + ] |
| 112 | + |
| 113 | + for y, x in path: |
| 114 | + for dy, dx, manhattan in possible_ranges: |
| 115 | + ny, nx = y + dy, x + dx |
| 116 | + if (ny, nx) in coords_steps: |
| 117 | + steps_saved = coords_steps[(ny, nx)] - coords_steps[(y, x)] - manhattan |
| 118 | + if steps_saved >= savings: |
| 119 | + cheats += 1 |
| 120 | + |
| 121 | + return cheats |
| 122 | + |
| 123 | + def solve_part(self, data: List[str], cheat_moves: int) -> int: |
| 124 | + """Common solution logic for both parts. |
| 125 | +
|
| 126 | + Args: |
| 127 | + data (List[str]): Input data lines |
| 128 | + cheat_moves (int): Maximum number of moves allowed for cheats |
| 129 | +
|
| 130 | + Returns: |
| 131 | + int: Number of valid cheats found |
| 132 | + """ |
| 133 | + grid, start, end = self.parse_data(data) |
| 134 | + path = self.find_shortest_path(grid, start, end) |
| 135 | + if path is None: |
| 136 | + return 0 |
| 137 | + |
| 138 | + return self.find_cheat_pairs(path, savings=2, cheat_moves=cheat_moves) |
| 139 | + |
| 140 | + def part1(self, data: List[str]) -> int: |
| 141 | + """Count valid cheats using maximum 2-move teleports. |
| 142 | +
|
| 143 | + Finds all valid ways to cheat through walls using at most 2 moves in any direction. |
| 144 | + A valid cheat must return to a normal path position after teleporting and must |
| 145 | + save at least the required number of steps compared to the normal path. |
| 146 | +
|
| 147 | + Args: |
| 148 | + data (List[str]): Input lines containing the maze grid with start 'S' and end 'E' |
| 149 | +
|
| 150 | + Returns: |
| 151 | + int: Number of valid cheats found that save the required minimum steps |
| 152 | + """ |
| 153 | + return self.solve_part(data, cheat_moves=2) |
| 154 | + |
| 155 | + def part2(self, data: List[str]) -> int: |
| 156 | + """Count valid cheats using maximum 20-move teleports. |
| 157 | +
|
| 158 | + Similar to part 1, but allows for longer teleport distances of up to 20 moves. |
| 159 | + This enables finding shortcuts that bypass larger sections of walls, but still |
| 160 | + requires ending on a valid path position and saving the minimum required steps. |
| 161 | +
|
| 162 | + Args: |
| 163 | + data (List[str]): Input lines containing the maze grid with start 'S' and end 'E' |
| 164 | +
|
| 165 | + Returns: |
| 166 | + int: Number of valid cheats found that save the required minimum steps |
| 167 | + """ |
| 168 | + return self.solve_part(data, cheat_moves=20) |
0 commit comments