|
| 1 | +from collections import defaultdict |
| 2 | +from functools import cache |
| 3 | +from itertools import product |
| 4 | +from typing import Dict, List, Tuple |
| 5 | + |
| 6 | +from aoc.models.base import SolutionBase |
| 7 | + |
| 8 | + |
| 9 | +class Solution(SolutionBase): |
| 10 | + """Solution for Advent of Code 2024 - Day 21: Keypad Conundrum. |
| 11 | +
|
| 12 | + This class solves a puzzle about robots translating movement codes on keypads. |
| 13 | + Part 1 calculates movement complexity with 2 robots, while Part 2 extends |
| 14 | + the chain to 25 robots for more complex translations. |
| 15 | +
|
| 16 | + Input format: |
| 17 | + - List of codes, one per line |
| 18 | + - Each code ends with 'A' |
| 19 | + - Codes can be numeric (0-9) or directional (^v<>) |
| 20 | + - Numeric part of code determines weighting in complexity calculation |
| 21 | +
|
| 22 | + This class inherits from `SolutionBase` and provides methods to parse keypad |
| 23 | + layouts, translate movement codes, and calculate total complexity scores. |
| 24 | + """ |
| 25 | + |
| 26 | + numeric_keypad = ["789", "456", "123", "#0A"] |
| 27 | + directional_keypad = ["#^A", "<v>"] |
| 28 | + |
| 29 | + def add_move( |
| 30 | + self, moves: Dict[Tuple[str, str], List[str]], key1: str, key2: str, movement: str |
| 31 | + ) -> None: |
| 32 | + """Add a valid movement sequence between two keys to the moves dictionary. |
| 33 | +
|
| 34 | + Validates and stores a movement sequence between two keys, excluding any moves |
| 35 | + involving the '#' key or self-moves. Appends 'A' to confirm each movement. |
| 36 | +
|
| 37 | + Args: |
| 38 | + moves: Dictionary mapping key pairs to their valid movement sequences |
| 39 | + key1: Starting key position |
| 40 | + key2: Target key position |
| 41 | + movement: String of directional moves (combination of ^v<>) |
| 42 | + """ |
| 43 | + if key1 != "#" and key2 != "#" and key1 != key2: |
| 44 | + moves[(key1, key2)].append(movement + "A") |
| 45 | + |
| 46 | + def parse_moves(self, keypad_layout: List[str]) -> Dict[Tuple[str, str], List[str]]: |
| 47 | + """Generate all possible moves between keys on a given keypad layout. |
| 48 | +
|
| 49 | + Maps out every valid movement sequence between pairs of keys, considering: |
| 50 | + - Direct horizontal moves using < and > |
| 51 | + - Direct vertical moves using ^ and v |
| 52 | + - Diagonal moves trying both horizontal-then-vertical and vertical-then-horizontal |
| 53 | + - Avoiding the '#' obstacle and invalid positions |
| 54 | +
|
| 55 | + Args: |
| 56 | + keypad_layout: List of strings representing rows of the keypad |
| 57 | +
|
| 58 | + Returns: |
| 59 | + Dictionary mapping key pairs (start, end) to lists of valid movement sequences |
| 60 | + """ |
| 61 | + positions = { |
| 62 | + key: (r, c) for r, row in enumerate(keypad_layout) for c, key in enumerate(row) |
| 63 | + } |
| 64 | + |
| 65 | + moves = defaultdict(list) |
| 66 | + keys = sorted(positions.keys()) |
| 67 | + |
| 68 | + for key1, key2 in product(keys, repeat=2): |
| 69 | + if key1 == "#" or key2 == "#" or key1 == key2: |
| 70 | + continue |
| 71 | + |
| 72 | + r1, c1 = positions[key1] |
| 73 | + r2, c2 = positions[key2] |
| 74 | + r_hash, c_hash = positions["#"] |
| 75 | + |
| 76 | + if r1 == r2: |
| 77 | + self.add_move(moves, key1, key2, (">" if c2 > c1 else "<") * abs(c2 - c1)) |
| 78 | + |
| 79 | + elif c1 == c2: |
| 80 | + self.add_move(moves, key1, key2, ("v" if r2 > r1 else "^") * abs(r2 - r1)) |
| 81 | + |
| 82 | + else: |
| 83 | + if r1 != r_hash or c2 != c_hash: |
| 84 | + self.add_move( |
| 85 | + moves, |
| 86 | + key1, |
| 87 | + key2, |
| 88 | + (">" if c2 > c1 else "<") * abs(c2 - c1) |
| 89 | + + ("v" if r2 > r1 else "^") * abs(r2 - r1), |
| 90 | + ) |
| 91 | + |
| 92 | + if c1 != c_hash or r2 != r_hash: |
| 93 | + self.add_move( |
| 94 | + moves, |
| 95 | + key1, |
| 96 | + key2, |
| 97 | + ("v" if r2 > r1 else "^") * abs(r2 - r1) |
| 98 | + + (">" if c2 > c1 else "<") * abs(c2 - c1), |
| 99 | + ) |
| 100 | + |
| 101 | + return moves |
| 102 | + |
| 103 | + def build_combinations(self, arrays: List[List[str]]) -> List[List[str]]: |
| 104 | + """Generate all possible combinations of movement sequences. |
| 105 | +
|
| 106 | + Uses itertools.product to efficiently generate all possible combinations |
| 107 | + of movement sequences for a series of moves. |
| 108 | +
|
| 109 | + Args: |
| 110 | + arrays: List of lists where each inner list contains possible movements |
| 111 | + for a single step in the sequence |
| 112 | +
|
| 113 | + Returns: |
| 114 | + List of all possible movement sequence combinations |
| 115 | + """ |
| 116 | + return list(product(*arrays)) |
| 117 | + |
| 118 | + @cache |
| 119 | + def translate(self, code: str, depth: int) -> int: |
| 120 | + """Calculate minimum moves needed for a chain of robots to input a code. |
| 121 | +
|
| 122 | + Recursively determines the shortest sequence of moves needed for the robot |
| 123 | + chain to input the given code, where each robot translates the movements |
| 124 | + of the previous robot. |
| 125 | +
|
| 126 | + Args: |
| 127 | + code: The input code to translate (either numeric or directional) |
| 128 | + depth: Number of robots in the chain (2 for part 1, 25 for part 2) |
| 129 | +
|
| 130 | + Returns: |
| 131 | + Minimum number of total moves required to input the code |
| 132 | + """ |
| 133 | + moves = self.translate_numpad(code) if code[0].isnumeric() else self.translate_keypad(code) |
| 134 | + |
| 135 | + if depth == 0: |
| 136 | + return min(sum(map(len, move)) for move in moves) |
| 137 | + |
| 138 | + return min( |
| 139 | + sum(self.translate(curr_code, depth - 1) for curr_code in move) for move in moves |
| 140 | + ) |
| 141 | + |
| 142 | + def translate_numpad(self, code: str) -> List[List[str]]: |
| 143 | + """Convert a numeric code into possible movement sequences. |
| 144 | +
|
| 145 | + Translates a sequence of numeric inputs into all possible movement |
| 146 | + combinations on the numeric keypad. |
| 147 | +
|
| 148 | + Args: |
| 149 | + code: String of numeric characters to translate |
| 150 | +
|
| 151 | + Returns: |
| 152 | + List of possible movement sequence combinations to input the code |
| 153 | + """ |
| 154 | + code = "A" + code # Start from A position |
| 155 | + moves = [self.moves1[(a, b)] for a, b in zip(code, code[1:])] |
| 156 | + return self.build_combinations(moves) |
| 157 | + |
| 158 | + def translate_keypad(self, code: str) -> List[List[str]]: |
| 159 | + """Convert a directional code into possible movement sequences. |
| 160 | +
|
| 161 | + Translates a sequence of directional inputs into all possible movement |
| 162 | + combinations on the directional keypad, handling self-moves with 'A'. |
| 163 | +
|
| 164 | + Args: |
| 165 | + code: String of directional characters to translate |
| 166 | +
|
| 167 | + Returns: |
| 168 | + List of possible movement sequence combinations to input the code |
| 169 | + """ |
| 170 | + code = "A" + code # Start from A position |
| 171 | + moves = [self.moves2[(a, b)] if a != b else ["A"] for a, b in zip(code, code[1:])] |
| 172 | + return self.build_combinations(moves) |
| 173 | + |
| 174 | + def part1(self, data: List[str]) -> int: |
| 175 | + """Calculate total complexity with 2-robot chains. |
| 176 | +
|
| 177 | + Processes each code using a chain of 2 robots, where each robot translates |
| 178 | + the movements of the previous robot. Complexity is calculated as the product |
| 179 | + of the minimum moves required and the numeric part of each code. |
| 180 | +
|
| 181 | + Args: |
| 182 | + data: List of input codes, each ending with 'A' |
| 183 | +
|
| 184 | + Returns: |
| 185 | + Total complexity score summed across all codes |
| 186 | + """ |
| 187 | + self.moves1 = self.parse_moves(self.numeric_keypad) |
| 188 | + self.moves2 = self.parse_moves(self.directional_keypad) |
| 189 | + |
| 190 | + total_complexity = 0 |
| 191 | + for code in data: |
| 192 | + code = code.strip() |
| 193 | + min_len = self.translate(code, 2) # Depth 2 for the chain of commands |
| 194 | + numeric_part = int(code[:-1]) # Remove 'A' and convert to int |
| 195 | + total_complexity += min_len * numeric_part |
| 196 | + |
| 197 | + return total_complexity |
| 198 | + |
| 199 | + def part2(self, data: List[str]) -> int: |
| 200 | + """Calculate total complexity with 25-robot chains. |
| 201 | +
|
| 202 | + Similar to part 1 but uses chains of 25 robots instead of 2, resulting in |
| 203 | + more complex movement translations and potentially higher complexity scores. |
| 204 | +
|
| 205 | + Args: |
| 206 | + data: List of input codes, each ending with 'A' |
| 207 | +
|
| 208 | + Returns: |
| 209 | + Total complexity score summed across all codes using 25-robot chains |
| 210 | + """ |
| 211 | + self.moves1 = self.parse_moves(self.numeric_keypad) |
| 212 | + self.moves2 = self.parse_moves(self.directional_keypad) |
| 213 | + |
| 214 | + complexities = 0 |
| 215 | + for code in data: |
| 216 | + min_len = self.translate(code, 25) # 25 robots instead of 2 |
| 217 | + complexities += min_len * int(code[:-1]) |
| 218 | + |
| 219 | + return complexities |
0 commit comments