|
| 1 | +from collections import deque |
| 2 | +from typing import List, Tuple |
| 3 | + |
| 4 | +from aoc.models.base import SolutionBase |
| 5 | + |
| 6 | + |
| 7 | +class Solution(SolutionBase): |
| 8 | + """Solution for Advent of Code 2024 - Day 18: RAM Run. |
| 9 | +
|
| 10 | + This class solves a puzzle involving pathfinding in a corrupted memory space. |
| 11 | + The memory space is represented as a grid where bytes fall and corrupt specific |
| 12 | + coordinates. Part 1 finds the shortest path from start to exit through uncorrupted |
| 13 | + spaces, while Part 2 determines which falling byte first makes the exit unreachable. |
| 14 | +
|
| 15 | + Input format: |
| 16 | + - Multiple lines of comma-separated coordinates (x,y) |
| 17 | + - Each coordinate represents where a byte will fall and corrupt |
| 18 | + - Coordinates start from (0,0) at top-left |
| 19 | + - Grid size is 7x7 for test data, 71x71 for real data |
| 20 | +
|
| 21 | + This class inherits from `SolutionBase` and provides methods to construct grids, |
| 22 | + find paths, and analyze byte corruption patterns. |
| 23 | + """ |
| 24 | + |
| 25 | + def construct_grid( |
| 26 | + self, size: int, coordinates: List[Tuple[int, int]], limit: int |
| 27 | + ) -> List[str]: |
| 28 | + """Construct a grid representation of the memory space with corrupted bytes. |
| 29 | +
|
| 30 | + Args: |
| 31 | + size (int): Size of the grid (both width and height) |
| 32 | + coordinates (List[Tuple[int, int]]): List of (x,y) coordinates where bytes fall |
| 33 | + limit (int): Number of coordinates to process (12 for test, 1024 for real data) |
| 34 | +
|
| 35 | + Returns: |
| 36 | + List[str]: Grid representation where '.' is safe and '#' is corrupted |
| 37 | + """ |
| 38 | + grid = [["."] * size for _ in range(size)] |
| 39 | + |
| 40 | + for col, row in coordinates[:limit]: |
| 41 | + grid[row][col] = "#" |
| 42 | + |
| 43 | + return ["".join(row) for row in grid] |
| 44 | + |
| 45 | + def has_path(self, grid: List[str]) -> bool: |
| 46 | + """Check if there exists any path from start to end through uncorrupted spaces. |
| 47 | +
|
| 48 | + Uses breadth-first search to efficiently determine path existence without |
| 49 | + calculating the actual path length. |
| 50 | +
|
| 51 | + Args: |
| 52 | + grid (List[str]): Current state of the memory space |
| 53 | +
|
| 54 | + Returns: |
| 55 | + bool: True if a path exists to the exit, False otherwise |
| 56 | + """ |
| 57 | + size = len(grid) |
| 58 | + start = (0, 0) |
| 59 | + end = (size - 1, size - 1) |
| 60 | + queue = deque([start]) |
| 61 | + seen = {start} |
| 62 | + |
| 63 | + while queue: |
| 64 | + x, y = queue.popleft() |
| 65 | + |
| 66 | + if (x, y) == end: |
| 67 | + return True |
| 68 | + |
| 69 | + for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]: |
| 70 | + new_x, new_y = x + dx, y + dy |
| 71 | + if ( |
| 72 | + 0 <= new_x < size |
| 73 | + and 0 <= new_y < size |
| 74 | + and grid[new_y][new_x] == "." |
| 75 | + and (new_x, new_y) not in seen |
| 76 | + ): |
| 77 | + seen.add((new_x, new_y)) |
| 78 | + queue.append((new_x, new_y)) |
| 79 | + |
| 80 | + return False |
| 81 | + |
| 82 | + def find_shortest_path(self, grid: List[str]) -> int: |
| 83 | + """Find the shortest path from start to end through uncorrupted spaces. |
| 84 | +
|
| 85 | + Uses breadth-first search to guarantee the shortest path is found. |
| 86 | + Returns -1 if no path exists. |
| 87 | +
|
| 88 | + Args: |
| 89 | + grid (List[str]): Current state of the memory space |
| 90 | +
|
| 91 | + Returns: |
| 92 | + int: Length of shortest path to exit, or -1 if no path exists |
| 93 | + """ |
| 94 | + size = len(grid) |
| 95 | + start = (0, 0) |
| 96 | + end = (size - 1, size - 1) |
| 97 | + queue = deque([(start, 0)]) # (position, path_length) |
| 98 | + seen = {start} |
| 99 | + |
| 100 | + while queue: |
| 101 | + position, length = queue.popleft() |
| 102 | + |
| 103 | + if position == end: |
| 104 | + return length |
| 105 | + |
| 106 | + x, y = position |
| 107 | + for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]: |
| 108 | + new_x, new_y = x + dx, y + dy |
| 109 | + new_pos = (new_x, new_y) |
| 110 | + if ( |
| 111 | + 0 <= new_x < size |
| 112 | + and 0 <= new_y < size |
| 113 | + and grid[new_y][new_x] == "." |
| 114 | + and new_pos not in seen |
| 115 | + ): |
| 116 | + seen.add(new_pos) |
| 117 | + queue.append((new_pos, length + 1)) |
| 118 | + |
| 119 | + return -1 |
| 120 | + |
| 121 | + def part1(self, data: List[str]) -> int: |
| 122 | + """Find shortest path to exit after initial byte corruption. |
| 123 | +
|
| 124 | + For test data (7x7 grid), simulates first 12 bytes falling. |
| 125 | + For real data (71x71 grid), simulates first 1024 bytes falling. |
| 126 | +
|
| 127 | + Args: |
| 128 | + data (List[str]): Input lines containing byte fall coordinates |
| 129 | +
|
| 130 | + Returns: |
| 131 | + int: Length of shortest path to exit, or -1 if no path exists |
| 132 | + """ |
| 133 | + coordinates = [tuple(map(int, row.split(","))) for row in data] |
| 134 | + limit = 12 if len(coordinates) == 25 else 1024 |
| 135 | + grid_size = max(n for pair in coordinates for n in pair) + 1 |
| 136 | + grid = self.construct_grid(grid_size, coordinates, limit) |
| 137 | + return self.find_shortest_path(grid) |
| 138 | + |
| 139 | + def part2(self, data: List[str]) -> str: |
| 140 | + """Find coordinates of first byte that makes exit unreachable. |
| 141 | +
|
| 142 | + Uses binary search to efficiently find the critical byte that blocks |
| 143 | + all possible paths to the exit. |
| 144 | +
|
| 145 | + Args: |
| 146 | + data (List[str]): Input lines containing byte fall coordinates |
| 147 | +
|
| 148 | + Returns: |
| 149 | + str: Coordinates of blocking byte as "x,y" string |
| 150 | + """ |
| 151 | + coordinates = [tuple(map(int, row.split(","))) for row in data] |
| 152 | + grid_size = max(n for pair in coordinates for n in pair) + 1 |
| 153 | + |
| 154 | + # Binary search for the first coordinate that blocks all paths |
| 155 | + left = 0 |
| 156 | + right = len(coordinates) |
| 157 | + |
| 158 | + while right - left > 1: |
| 159 | + mid = (left + right) // 2 |
| 160 | + grid = self.construct_grid(grid_size, coordinates, mid) |
| 161 | + |
| 162 | + if self.has_path(grid): |
| 163 | + left = mid |
| 164 | + else: |
| 165 | + right = mid |
| 166 | + |
| 167 | + # right is now the index of the first coordinate that blocks all paths |
| 168 | + return f"{coordinates[right-1][0]},{coordinates[right-1][1]}" |
0 commit comments