|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one |
| 3 | + * or more contributor license agreements. See the NOTICE file |
| 4 | + * distributed with this work for additional information |
| 5 | + * regarding copyright ownership. The ASF licenses this file |
| 6 | + * to you under the Apache License, Version 2.0 (the |
| 7 | + * "License"); you may not use this file except in compliance |
| 8 | + * with the License. You may obtain a copy of the License at |
| 9 | + * |
| 10 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | + * |
| 12 | + * Unless required by applicable law or agreed to in writing, |
| 13 | + * software distributed under the License is distributed on an |
| 14 | + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 15 | + * KIND, either express or implied. See the License for the |
| 16 | + * specific language governing permissions and limitations |
| 17 | + * under the License. |
| 18 | + */ |
| 19 | + |
| 20 | +package org.apache.comet.testing |
| 21 | + |
| 22 | +import java.math.{BigDecimal, RoundingMode} |
| 23 | +import java.nio.charset.Charset |
| 24 | +import java.sql.Timestamp |
| 25 | +import java.text.SimpleDateFormat |
| 26 | +import java.time.{Instant, LocalDateTime, ZoneId} |
| 27 | + |
| 28 | +import scala.collection.mutable.ListBuffer |
| 29 | +import scala.util.Random |
| 30 | + |
| 31 | +import org.apache.commons.lang3.RandomStringUtils |
| 32 | +import org.apache.spark.sql.{DataFrame, Row, SparkSession} |
| 33 | +import org.apache.spark.sql.types._ |
| 34 | + |
| 35 | +object FuzzDataGenerator { |
| 36 | + |
| 37 | + /** |
| 38 | + * Date to use as base for generating temporal columns. Random integers will be added to or |
| 39 | + * subtracted from this value. |
| 40 | + * |
| 41 | + * Date was chosen to trigger generating a timestamp that's larger than a 64-bit nanosecond |
| 42 | + * timestamp can represent so that we test support for INT96 timestamps. |
| 43 | + */ |
| 44 | + val defaultBaseDate: Long = |
| 45 | + new SimpleDateFormat("YYYY-MM-DD hh:mm:ss").parse("3333-05-25 12:34:56").getTime |
| 46 | + |
| 47 | + private val primitiveTypes = Seq( |
| 48 | + DataTypes.BooleanType, |
| 49 | + DataTypes.ByteType, |
| 50 | + DataTypes.ShortType, |
| 51 | + DataTypes.IntegerType, |
| 52 | + DataTypes.LongType, |
| 53 | + DataTypes.FloatType, |
| 54 | + DataTypes.DoubleType, |
| 55 | + DataTypes.createDecimalType(10, 2), |
| 56 | + DataTypes.createDecimalType(36, 18), |
| 57 | + DataTypes.DateType, |
| 58 | + DataTypes.TimestampType, |
| 59 | + DataTypes.TimestampNTZType, |
| 60 | + DataTypes.StringType, |
| 61 | + DataTypes.BinaryType) |
| 62 | + |
| 63 | + private def filteredPrimitives(excludeTypes: Seq[DataType]) = { |
| 64 | + |
| 65 | + primitiveTypes.filterNot { dataType => |
| 66 | + excludeTypes.exists { |
| 67 | + case _: DecimalType => |
| 68 | + // For DecimalType, match if the type is also a DecimalType (ignore precision/scale) |
| 69 | + dataType.isInstanceOf[DecimalType] |
| 70 | + case excludeType => |
| 71 | + dataType == excludeType |
| 72 | + } |
| 73 | + } |
| 74 | + } |
| 75 | + |
| 76 | + def generateDataFrame( |
| 77 | + r: Random, |
| 78 | + spark: SparkSession, |
| 79 | + numRows: Int, |
| 80 | + options: DataGenOptions): DataFrame = { |
| 81 | + |
| 82 | + val filteredPrimitiveTypes = filteredPrimitives(options.excludeTypes) |
| 83 | + val dataTypes = ListBuffer[DataType]() |
| 84 | + dataTypes.appendAll(filteredPrimitiveTypes) |
| 85 | + |
| 86 | + val arraysOfPrimitives = filteredPrimitiveTypes.map(DataTypes.createArrayType) |
| 87 | + |
| 88 | + if (options.generateStruct) { |
| 89 | + dataTypes += StructType(filteredPrimitiveTypes.zipWithIndex.map(x => |
| 90 | + StructField(s"c${x._2}", x._1, nullable = true))) |
| 91 | + |
| 92 | + if (options.generateArray) { |
| 93 | + dataTypes += StructType(arraysOfPrimitives.zipWithIndex.map(x => |
| 94 | + StructField(s"c${x._2}", x._1, nullable = true))) |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + if (options.generateMap) { |
| 99 | + dataTypes += MapType(DataTypes.IntegerType, DataTypes.StringType) |
| 100 | + } |
| 101 | + |
| 102 | + if (options.generateArray) { |
| 103 | + dataTypes.appendAll(arraysOfPrimitives) |
| 104 | + |
| 105 | + if (options.generateStruct) { |
| 106 | + dataTypes += DataTypes.createArrayType( |
| 107 | + StructType(filteredPrimitiveTypes.zipWithIndex.map(x => |
| 108 | + StructField(s"c${x._2}", x._1, nullable = true)))) |
| 109 | + } |
| 110 | + |
| 111 | + if (options.generateMap) { |
| 112 | + dataTypes += DataTypes.createArrayType( |
| 113 | + MapType(DataTypes.IntegerType, DataTypes.StringType)) |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + // generate schema using random data types |
| 118 | + val fields = dataTypes.zipWithIndex |
| 119 | + .map(i => StructField(s"c${i._2}", i._1, nullable = true)) |
| 120 | + val schema = StructType(fields.toSeq) |
| 121 | + |
| 122 | + // generate columnar data |
| 123 | + val cols: Seq[Seq[Any]] = |
| 124 | + schema.fields.map(f => generateColumn(r, f.dataType, numRows, options)).toSeq |
| 125 | + |
| 126 | + // convert to rows |
| 127 | + val rows = Range(0, numRows).map(rowIndex => { |
| 128 | + Row.fromSeq(cols.map(_(rowIndex))) |
| 129 | + }) |
| 130 | + |
| 131 | + spark.createDataFrame(spark.sparkContext.parallelize(rows), schema) |
| 132 | + } |
| 133 | + |
| 134 | + private def generateColumn( |
| 135 | + r: Random, |
| 136 | + dataType: DataType, |
| 137 | + numRows: Int, |
| 138 | + options: DataGenOptions): Seq[Any] = { |
| 139 | + dataType match { |
| 140 | + case ArrayType(elementType, _) => |
| 141 | + val values = generateColumn(r, elementType, numRows, options) |
| 142 | + val list = ListBuffer[Any]() |
| 143 | + for (i <- 0 until numRows) { |
| 144 | + if (i % 10 == 0 && options.allowNull) { |
| 145 | + list += null |
| 146 | + } else { |
| 147 | + list += Range(0, r.nextInt(5)).map(j => values((i + j) % values.length)).toArray |
| 148 | + } |
| 149 | + } |
| 150 | + list.toSeq |
| 151 | + case StructType(fields) => |
| 152 | + val values = fields.map(f => generateColumn(r, f.dataType, numRows, options)) |
| 153 | + Range(0, numRows).map(i => Row(values.indices.map(j => values(j)(i)): _*)) |
| 154 | + case MapType(keyType, valueType, _) => |
| 155 | + val mapOptions = options.copy(allowNull = false) |
| 156 | + val k = generateColumn(r, keyType, numRows, mapOptions) |
| 157 | + val v = generateColumn(r, valueType, numRows, mapOptions) |
| 158 | + k.zip(v).map(x => Map(x._1 -> x._2)) |
| 159 | + case DataTypes.BooleanType => |
| 160 | + generateColumn(r, DataTypes.LongType, numRows, options) |
| 161 | + .map(_.asInstanceOf[Long].toShort) |
| 162 | + .map(s => s % 2 == 0) |
| 163 | + case DataTypes.ByteType => |
| 164 | + generateColumn(r, DataTypes.LongType, numRows, options) |
| 165 | + .map(_.asInstanceOf[Long].toByte) |
| 166 | + case DataTypes.ShortType => |
| 167 | + generateColumn(r, DataTypes.LongType, numRows, options) |
| 168 | + .map(_.asInstanceOf[Long].toShort) |
| 169 | + case DataTypes.IntegerType => |
| 170 | + generateColumn(r, DataTypes.LongType, numRows, options) |
| 171 | + .map(_.asInstanceOf[Long].toInt) |
| 172 | + case DataTypes.LongType => |
| 173 | + Range(0, numRows).map(_ => { |
| 174 | + r.nextInt(50) match { |
| 175 | + case 0 if options.allowNull => null |
| 176 | + case 1 => 0L |
| 177 | + case 2 => Byte.MinValue.toLong |
| 178 | + case 3 => Byte.MaxValue.toLong |
| 179 | + case 4 => Short.MinValue.toLong |
| 180 | + case 5 => Short.MaxValue.toLong |
| 181 | + case 6 => Int.MinValue.toLong |
| 182 | + case 7 => Int.MaxValue.toLong |
| 183 | + case 8 => Long.MinValue |
| 184 | + case 9 => Long.MaxValue |
| 185 | + case _ => r.nextLong() |
| 186 | + } |
| 187 | + }) |
| 188 | + case DataTypes.FloatType => |
| 189 | + Range(0, numRows).map(_ => { |
| 190 | + r.nextInt(20) match { |
| 191 | + case 0 if options.allowNull => null |
| 192 | + case 1 => Float.NegativeInfinity |
| 193 | + case 2 => Float.PositiveInfinity |
| 194 | + case 3 => Float.MinValue |
| 195 | + case 4 => Float.MaxValue |
| 196 | + case 5 => 0.0f |
| 197 | + case 6 if options.generateNegativeZero => -0.0f |
| 198 | + case _ => r.nextFloat() |
| 199 | + } |
| 200 | + }) |
| 201 | + case DataTypes.DoubleType => |
| 202 | + Range(0, numRows).map(_ => { |
| 203 | + r.nextInt(20) match { |
| 204 | + case 0 if options.allowNull => null |
| 205 | + case 1 => Double.NegativeInfinity |
| 206 | + case 2 => Double.PositiveInfinity |
| 207 | + case 3 => Double.MinValue |
| 208 | + case 4 => Double.MaxValue |
| 209 | + case 5 => 0.0 |
| 210 | + case 6 if options.generateNegativeZero => -0.0 |
| 211 | + case _ => r.nextDouble() |
| 212 | + } |
| 213 | + }) |
| 214 | + case dt: DecimalType => |
| 215 | + Range(0, numRows).map(_ => |
| 216 | + new BigDecimal(r.nextDouble()).setScale(dt.scale, RoundingMode.HALF_UP)) |
| 217 | + case DataTypes.StringType => |
| 218 | + Range(0, numRows).map(_ => { |
| 219 | + r.nextInt(10) match { |
| 220 | + case 0 if options.allowNull => null |
| 221 | + case 1 => r.nextInt().toByte.toString |
| 222 | + case 2 => r.nextLong().toString |
| 223 | + case 3 => r.nextDouble().toString |
| 224 | + case 4 => RandomStringUtils.randomAlphabetic(8) |
| 225 | + case _ => r.nextString(8) |
| 226 | + } |
| 227 | + }) |
| 228 | + case DataTypes.BinaryType => |
| 229 | + generateColumn(r, DataTypes.StringType, numRows, options) |
| 230 | + .map { |
| 231 | + case x: String => |
| 232 | + x.getBytes(Charset.defaultCharset()) |
| 233 | + case _ => |
| 234 | + null |
| 235 | + } |
| 236 | + case DataTypes.DateType => |
| 237 | + Range(0, numRows).map(_ => new java.sql.Date(options.baseDate + r.nextInt())) |
| 238 | + case DataTypes.TimestampType => |
| 239 | + Range(0, numRows).map(_ => new Timestamp(options.baseDate + r.nextInt())) |
| 240 | + case DataTypes.TimestampNTZType => |
| 241 | + Range(0, numRows).map(_ => |
| 242 | + LocalDateTime.ofInstant( |
| 243 | + Instant.ofEpochMilli(options.baseDate + r.nextInt()), |
| 244 | + ZoneId.systemDefault())) |
| 245 | + case _ => throw new IllegalStateException(s"Cannot generate data for $dataType yet") |
| 246 | + } |
| 247 | + } |
| 248 | +} |
| 249 | + |
| 250 | +case class DataGenOptions( |
| 251 | + allowNull: Boolean = true, |
| 252 | + generateNegativeZero: Boolean = true, |
| 253 | + baseDate: Long = FuzzDataGenerator.defaultBaseDate, |
| 254 | + generateArray: Boolean = false, |
| 255 | + generateStruct: Boolean = false, |
| 256 | + generateMap: Boolean = false, |
| 257 | + excludeTypes: Seq[DataType] = Seq.empty) |
0 commit comments