@@ -3282,27 +3282,19 @@ def errorbar(self, x, y, yerr=None, xerr=None,
32823282 kwargs = {k : v for k , v in kwargs .items () if v is not None }
32833283 kwargs .setdefault ('zorder' , 2 )
32843284
3285- self . _process_unit_info ([( "x" , x ), ( "y" , y )], kwargs , convert = False )
3286-
3287- # Make sure all the args are iterable; use lists not arrays to preserve
3288- # units.
3289- if not np .iterable ( x ):
3290- x = [ x ]
3291-
3292- if not np .iterable ( y ):
3293- y = [ y ]
3294-
3285+ # Casting to object arrays preserves units.
3286+ if not isinstance ( x , np . ndarray ):
3287+ x = np . asarray ( x , dtype = object )
3288+ if not isinstance ( y , np . ndarray ):
3289+ y = np .asarray ( y , dtype = object )
3290+ if xerr is not None and not isinstance ( xerr , np . ndarray ):
3291+ xerr = np . asarray ( xerr , dtype = object )
3292+ if yerr is not None and not isinstance ( yerr , np .ndarray ):
3293+ yerr = np . asarray ( yerr , dtype = object )
3294+ x , y = np . atleast_1d ( x , y ) # Make sure all the args are iterable.
32953295 if len (x ) != len (y ):
32963296 raise ValueError ("'x' and 'y' must have the same size" )
32973297
3298- if xerr is not None :
3299- if not np .iterable (xerr ):
3300- xerr = [xerr ] * len (x )
3301-
3302- if yerr is not None :
3303- if not np .iterable (yerr ):
3304- yerr = [yerr ] * len (y )
3305-
33063298 if isinstance (errorevery , Integral ):
33073299 errorevery = (0 , errorevery )
33083300 if isinstance (errorevery , tuple ):
@@ -3314,10 +3306,8 @@ def errorbar(self, x, y, yerr=None, xerr=None,
33143306 raise ValueError (
33153307 f'errorevery={ errorevery !r} is a not a tuple of two '
33163308 f'integers' )
3317-
33183309 elif isinstance (errorevery , slice ):
33193310 pass
3320-
33213311 elif not isinstance (errorevery , str ) and np .iterable (errorevery ):
33223312 # fancy indexing
33233313 try :
@@ -3329,6 +3319,8 @@ def errorbar(self, x, y, yerr=None, xerr=None,
33293319 else :
33303320 raise ValueError (
33313321 f"errorevery={ errorevery !r} is not a recognized value" )
3322+ everymask = np .zeros (len (x ), bool )
3323+ everymask [errorevery ] = True
33323324
33333325 label = kwargs .pop ("label" , None )
33343326 kwargs ['label' ] = '_nolegend_'
@@ -3412,13 +3404,8 @@ def errorbar(self, x, y, yerr=None, xerr=None,
34123404 xlolims = np .broadcast_to (xlolims , len (x )).astype (bool )
34133405 xuplims = np .broadcast_to (xuplims , len (x )).astype (bool )
34143406
3415- everymask = np .zeros (len (x ), bool )
3416- everymask [errorevery ] = True
3417-
3418- def apply_mask (arrays , mask ):
3419- # Return, for each array in *arrays*, the elements for which *mask*
3420- # is True, without using fancy indexing.
3421- return [[* itertools .compress (array , mask )] for array in arrays ]
3407+ # Vectorized fancy-indexer.
3408+ def apply_mask (arrays , mask ): return [array [mask ] for array in arrays ]
34223409
34233410 def extract_err (name , err , data , lolims , uplims ):
34243411 """
@@ -3439,24 +3426,14 @@ def extract_err(name, err, data, lolims, uplims):
34393426 Error is only applied on **lower** side when this is True. See
34403427 the note in the main docstring about this parameter's name.
34413428 """
3442- try : # Asymmetric error: pair of 1D iterables.
3443- a , b = err
3444- iter (a )
3445- iter (b )
3446- except (TypeError , ValueError ):
3447- a = b = err # Symmetric error: 1D iterable.
3448- if np .ndim (a ) > 1 or np .ndim (b ) > 1 :
3429+ try :
3430+ low , high = np .broadcast_to (err , (2 , len (data )))
3431+ except ValueError :
34493432 raise ValueError (
3450- f"{ name } err must be a scalar or a 1D or (2, n) array-like" )
3451- # Using list comprehensions rather than arrays to preserve units.
3452- for e in [a , b ]:
3453- if len (data ) != len (e ):
3454- raise ValueError (
3455- f"The lengths of the data ({ len (data )} ) and the "
3456- f"error { len (e )} do not match" )
3457- low = [v if lo else v - e for v , e , lo in zip (data , a , lolims )]
3458- high = [v if up else v + e for v , e , up in zip (data , b , uplims )]
3459- return low , high
3433+ f"'{ name } err' (shape: { np .shape (err )} ) must be a scalar "
3434+ f"or a 1D or (2, n) array-like whose shape matches "
3435+ f"'{ name } ' (shape: { np .shape (data )} )" ) from None
3436+ return data - low * ~ lolims , data + high * ~ uplims # low, high
34603437
34613438 if xerr is not None :
34623439 left , right = extract_err ('x' , xerr , x , xlolims , xuplims )
0 commit comments