130130#
131131# Coding styles
132132# =============
133-
133+ #
134134# The object-oriented and the pyplot interfaces
135135# ---------------------------------------------
136136#
172172###############################################################################
173173# (In addition, there is a third approach, for the case when embedding
174174# Matplotlib in a GUI application, which completely drops pyplot, even for
175- # figure creation. See the corresponding section in the gallery for more info
176- # ( :ref:`user_interfaces`) .)
175+ # figure creation. See the corresponding section in the gallery for more info:
176+ # :ref:`user_interfaces`.)
177177#
178178# Matplotlib's documentation and examples use both the OO and the pyplot
179179# styles. In general, we suggest using the OO style, particularly for
@@ -211,8 +211,6 @@ def my_plotter(ax, data1, data2, param_dict):
211211my_plotter (ax2 , data3 , data4 , {'marker' : 'o' })
212212
213213###############################################################################
214- # These examples provide convenience for more complex graphs.
215- #
216214# Note that if you want to install these as a python package, or any other
217215# customizations you could use use one of the many templates on the web;
218216# Matplotlib has one at `mpl-cookiecutter
@@ -260,8 +258,8 @@ def my_plotter(ax, data1, data2, param_dict):
260258# Marker size depends on the method being used. `~.Axes.plot` specifies
261259# markersize in points, and is generally the "diameter" or width of the
262260# marker. `~.Axes.scatter` specifies markersize as approximately
263- # proportional to the visual area of the marker. There are also an array of
264- # markerstyles available as string codes (see :mod:`~.matplotlib.markers`) or
261+ # proportional to the visual area of the marker. There is an array of
262+ # markerstyles available as string codes (see :mod:`~.matplotlib.markers`), or
265263# users can define their own `~.MarkerStyle` (see
266264# :doc:`/gallery/lines_bars_and_markers/marker_reference`):
267265
@@ -280,7 +278,7 @@ def my_plotter(ax, data1, data2, param_dict):
280278# Axes labels and text
281279# --------------------
282280#
283- # `~.Axes.set_xlabel`, `~.Axes.set_ylabel` and `~.Axes.set_title` are used to
281+ # `~.Axes.set_xlabel`, `~.Axes.set_ylabel`, and `~.Axes.set_title` are used to
284282# add text in the indicated locations (see :doc:`/tutorials/text/text_intro` for
285283# more discussion). Text can also be directly added to plots using
286284# `~.Axes.text`:
@@ -421,7 +419,7 @@ def my_plotter(ax, data1, data2, param_dict):
421419# Plotting dates and strings
422420# --------------------------
423421#
424- # Matplotlib can handle plotting arrays of dates and arrays of strings as
422+ # Matplotlib can handle plotting arrays of dates and arrays of strings, as
425423# well as floating point numbers. These get special locators and formatters
426424# as appropriate. For dates:
427425
@@ -446,8 +444,8 @@ def my_plotter(ax, data1, data2, param_dict):
446444##############################################################################
447445# One caveat about categorical plotting is that some methods of parsing
448446# text files return a list of strings, even if the strings all represent
449- # numbers or dates. If you pass 1000 strings Matplotlib will think you
450- # meant 1000 categories and will add 1000 ticks to your plot.
447+ # numbers or dates. If you pass 1000 strings, Matplotlib will think you
448+ # meant 1000 categories and will add 1000 ticks to your plot!
451449#
452450# Color mapped data
453451# =================
@@ -507,7 +505,9 @@ def my_plotter(ax, data1, data2, param_dict):
507505# :doc:`/gallery/subplots_axes_and_figures/colorbar_placement` for
508506# details. You can also change the appearance of colorbars with the
509507# *extend* keyword to add arrows to the ends, and *shrink* and *aspect* to
510- # control the size.
508+ # control the size. Finally, the colorbar will have default Locators
509+ # and Formatters appropriate to the Norm. These can be changed as for
510+ # other axis objects.
511511#
512512#
513513# Working with multiple figures and axes
0 commit comments