|
| 1 | +from lightning.pytorch import Trainer |
| 2 | +from lightning.pytorch.callbacks import ModelCheckpoint |
| 3 | +from lightning.pytorch.loggers import TensorBoardLogger |
| 4 | +from lightning.pytorch.callbacks import DeviceStatsMonitor |
| 5 | + |
| 6 | + |
| 7 | +from viscy.data.triplet import TripletDataModule |
| 8 | +from viscy.light.engine import ContrastiveModule |
| 9 | + |
| 10 | + |
| 11 | +def main(): |
| 12 | + dm = TripletDataModule( |
| 13 | + data_path="/hpc/projects/virtual_staining/2024_02_04_A549_DENV_ZIKV_timelapse/registered_chunked.zarr", |
| 14 | + tracks_path="/hpc/projects/intracellular_dashboard/viral-sensor/2024_02_04_A549_DENV_ZIKV_timelapse/7.1-seg_track/tracking_v1.zarr", |
| 15 | + source_channel=["Phase3D", "RFP"], |
| 16 | + z_range=(20, 35), |
| 17 | + batch_size=16, |
| 18 | + num_workers=10, |
| 19 | + initial_yx_patch_size=(384, 384), |
| 20 | + final_yx_patch_size=(224, 224), |
| 21 | + ) |
| 22 | + model = ContrastiveModule( |
| 23 | + backbone="convnext_tiny", |
| 24 | + in_channels=2, |
| 25 | + log_batches_per_epoch=2, |
| 26 | + log_samples_per_batch=3, |
| 27 | + ) |
| 28 | + trainer = Trainer( |
| 29 | + max_epochs=5, |
| 30 | + limit_train_batches=10, |
| 31 | + limit_val_batches=5, |
| 32 | + logger=TensorBoardLogger( |
| 33 | + "/hpc/projects/intracellular_dashboard/viral-sensor/infection_classification/models/test_tb", |
| 34 | + log_graph=True, |
| 35 | + default_hp_metric=True, |
| 36 | + ), |
| 37 | + log_every_n_steps=1, |
| 38 | + callbacks=[ModelCheckpoint()], |
| 39 | + profiler="simple", # other options: "advanced" uses cprofiler, "pytorch" uses pytorch profiler. |
| 40 | + ) |
| 41 | + trainer.fit(model, dm) |
| 42 | + |
| 43 | + |
| 44 | +if __name__ == "__main__": |
| 45 | + main() |
0 commit comments