You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Extend Posterior API to support torch distributions & overhaul MCSampler API (#1254)
Summary:
X-link: facebook/Ax#1254
X-link: facebookresearch/aepsych#193
Pull Request resolved: #1486
The main goal here is to broadly support non-Gaussian posteriors.
- Adds a generic `TorchPosterior` which wraps a Torch `Distribution`. This defines a few properties that we commonly expect, and calls the `distribution` for the rest.
- For a unified plotting API, this shifts away from mean & variance to a quantile function. Most torch distributions implement inverse CDF, which is used as quantile. For others, the user should implement it either at distribution or posterior level.
- Hands off the burden of base sample handling from the posterior to the samplers. Using a dispatcher based `get_sampler` method, we can support SAA with mixed posteriors without having to shuffle base samples in a `PosteriorList`, as long as all base distributions have a corresponding sampler and support base samples.
- Adds `ListSampler` for sampling from `PosteriorList`.
- Adds `ForkedRNGSampler` and `StochasticSampler` for sampling from posteriors without base samples.
- Adds `rsample_from_base_samples` for sampling with `base_samples` / with a `sampler`.
- Absorbs `FullyBayesianPosteriorList` into `PosteriorList`.
- For MC acqfs, introduces a `get_posterior_samples` for sampling from the posterior with base samples / a sampler. If a sampler was not specified, this constructs the appropriate sampler for the posterior using `get_sampler`, eliminating the need to construct a sampler in `__init__`, which we used to do under the assumption of Gaussian posteriors.
TODOs:
- Relax the Gaussian assumption in acquisition functions & utilities. Some of this might be addressed in a follow-up diff.
- Updates to website / docs & tutorials to clear up some of the Gaussian assumption, introduce the new relaxed API. Likely a follow-up diff.
Other notables:
- See D39760855 for usage of TorchDistribution in SkewGP.
- TransformedPosterior could serve as the fallback option for derived posteriors.
- MC samplers no longer support resample or collapse_batch_dims(=False). These can be handled by i) not using base samples, ii) just using torch.fork_rng and sampling without base samples from that. Samplers are only meant to support SAA. Introduces `ForkedRNGSampler` and `StochasticSampler` as convenience samplers for these use cases.
- Introduced `batch_range_override` for the sampler to support edge cases where we may want to override `posterior.batch_range` (needed in `qMultiStepLookahead`)
- Removes unused sampling utilities `construct_base_samples(_from_posterior)`, which assume Gaussian posterior.
- Moves the main logic of `_set_sampler` method of CachedCholesky subclasses to a `_update_base_samples` method on samplers, and simplifies these classes a bit more.
Reviewed By: Balandat
Differential Revision: D39759489
fbshipit-source-id: f4db866320bab9a5455dfc0c2f7fe2cc15385453
0 commit comments