Skip to content

Commit 9bc05e1

Browse files
Balandatfacebook-github-bot
authored andcommitted
Version bump to 0.1.1, update gpytorch requirement (#190)
Summary: - bump version to 0.1.1 - update changelog - bump gpytorch minimum requirement to 0.3.3 Pull Request resolved: #190 Reviewed By: sdaulton Differential Revision: D16022740 Pulled By: Balandat fbshipit-source-id: 4433955d31543722fd568549d89c7ee2ba8b1c3b
1 parent e8ae2b9 commit 9bc05e1

File tree

7 files changed

+64
-6
lines changed

7 files changed

+64
-6
lines changed

.conda/meta.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ requirements:
1616
- python>=3.6
1717
run:
1818
- pytorch>=1.1
19-
- gpytorch>=0.3.2
19+
- gpytorch>=0.3.3
2020
- scipy
2121

2222
test:

CHANGELOG.md

Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,64 @@
22

33
The release log for BoTorch.
44

5+
6+
## [0.1.1] - June 27, 2019
7+
8+
API updates, more robust model fitting
9+
10+
#### Breaking changes
11+
* rename `botorch.qmc` to `botorch.sampling`, move MC samplers from
12+
`acquisition.sampler` to `botorch.sampling.samplers` (#172)
13+
14+
#### New Features
15+
* Add `condition_on_observations` and `fantasize` to the Model level API (#173)
16+
* Support pending observations generically for all `MCAcqusitionFunctions` (#176)
17+
* Add fidelity kernel for training iterations/training data points (#178)
18+
* Support for optimization constraints across `q`-batches (to support things like
19+
sample budget constraints) (2a95a6c3f80e751d5cf8bc7240ca9f5b1529ec5b)
20+
* Add ModelList <-> Batched Model converter (#187)
21+
* New test functions
22+
* basic: `neg_ackley`, `cosine8`, `neg_levy`, `neg_rosenbrock`, `neg_shekel`
23+
(e26dc7576c7bf5fa2ba4cb8fbcf45849b95d324b)
24+
* for multi-fidelity BO: `neg_aug_branin`, `neg_aug_hartmann6`,
25+
`neg_aug_rosenbrock` (ec4aca744f65ca19847dc368f9fee4cc297533da)
26+
27+
#### Improved functionality:
28+
* More robust model fitting
29+
* Catch gpytorch numerical issues and return `NaN` to the optimizer (#184)
30+
* Restart optimization upon failure by sampling hyperparameters from their prior (#188)
31+
* Sequentially fit batched and `ModelListGP` models by default (#189)
32+
* Change minimum inferred noise level (e2c64fef1e76d526a33951c5eb75ac38d5581257)
33+
* Introduce optional batch limit in `joint_optimize` to increases scalability of
34+
parallel optimization (baab5786e8eaec02d37a511df04442471c632f8a)
35+
* Change constructor of `ModelListGP` to comply with GPyTorch’s `IndependentModelList`
36+
constructor (a6cf739e769c75319a67c7525a023ece8806b15d)
37+
* Use `torch.random` to set default seed for samplers (rather than `random`) to
38+
making sampling reproducible when setting `torch.manual_seed`
39+
(ae507ad97255d35f02c878f50ba68a2e27017815)
40+
41+
#### Performance Improvements
42+
* Use `einsum` in `LinearMCObjective` (22ca29535717cda0fcf7493a43bdf3dda324c22d)
43+
* Change default Sobol sample size for `MCAquisitionFunctions` to be base-2 for
44+
better MC integration performance (5d8e81866a23d6bfe4158f8c9b30ea14dd82e032)
45+
* Add ability to fit models in `SumMarginalLogLikelihood` sequentially (and make
46+
that the default setting) (#183)
47+
* Do not construct the full covariance matrix when computing posterior of
48+
single-output BatchedMultiOutputGPyTorchModel (#185)
49+
50+
#### Bug fixes
51+
* Properly handle observation_noise kwarg for BatchedMultiOutputGPyTorchModels (#182)
52+
* Fix a issue where `f_best` was always max for NoisyExpectedImprovement
53+
(de8544a75b58873c449b41840a335f6732754c77)
54+
* Fix bug and numerical issues in `initialize_q_batch`
55+
(844dcd1dc8f418ae42639e211c6bb8e31a75d8bf)
56+
* Fix numerical issues with `inv_transform` for qMC sampling (#162)
57+
58+
#### Other
59+
* Bump GPyTorch minimum requirement to 0.3.3
60+
61+
62+
563
## [0.1.0] - April 30, 2019
664

765
First public beta release.

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ Optimization simply use Ax.
5151
**Installation Requirements**
5252
- Python >= 3.6
5353
- PyTorch >= 1.1
54-
- gpytorch >= 0.3.2
54+
- gpytorch >= 0.3.3
5555
- scipy
5656

5757

botorch/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from .utils import manual_seed
1010

1111

12-
__version__ = "0.1.0"
12+
__version__ = "0.1.1"
1313

1414

1515
__all__ = [

docs/getting_started.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ Before jumping the gun, we recommend you start with the high-level
1515

1616
- Python >= 3.6
1717
- PyTorch >= 1.1
18-
- gpytorch >= 0.3.2
18+
- gpytorch >= 0.3.3
1919
- scipy
2020

2121
BoTorch is easily installed via

environment.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,5 +4,5 @@ channels:
44
- gpytorch
55
dependencies:
66
- pytorch>=1.1
7-
- gpytorch>=0.3.2
7+
- gpytorch>=0.3.3
88
- scipy

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@
6464
long_description=long_description,
6565
long_description_content_type="text/markdown",
6666
python_requires=">=3.6",
67-
install_requires=["torch>=1.1", "gpytorch>=0.3.2", "scipy"],
67+
install_requires=["torch>=1.1", "gpytorch>=0.3.3", "scipy"],
6868
packages=find_packages(),
6969
extras_require={
7070
"dev": DEV_REQUIRES,

0 commit comments

Comments
 (0)