You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Summary:
<!--
Thank you for sending the PR! We appreciate you spending the time to make BoTorch better.
Help us understand your motivation by explaining why you decided to make this change.
You can learn more about contributing to BoTorch here: https://github.com/pytorch/botorch/blob/main/CONTRIBUTING.md
-->
## Motivation
(Write your motivation here.)
### Have you read the [Contributing Guidelines on pull requests](https://github.com/pytorch/botorch/blob/main/CONTRIBUTING.md#pull-requests)?
(Write your answer here.)
Pull Request resolved: #1522
Test Plan:
(Write your test plan here. If you changed any code, please provide us with clear instructions on how you verified your changes work. Bonus points for screenshots and videos!)
## Related PRs
(If this PR adds or changes functionality, please take some time to update the docs at https://github.com/pytorch/botorch, and link to your PR here.)
Reviewed By: sdaulton
Differential Revision: D41522457
Pulled By: Balandat
fbshipit-source-id: f3525688a39b3452bbe17de790477e5f6d308e53
Copy file name to clipboardExpand all lines: docs/papers.md
+32-11Lines changed: 32 additions & 11 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -18,24 +18,45 @@ The main reference for BoTorch is
18
18
19
19
Here is an incomplete selection of peer-reviewed Bayesian optimization papers that build off of BoTorch:
20
20
21
+
-[Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization](https://arxiv.org/pdf/2210.10199.pdf). Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, Eytan Bakshy. NeurIPS 2022.
22
+
-[Robust Multi-Objective Bayesian Optimization Under Input Noise](https://arxiv.org/pdf/2202.07549.pdf). Samuel Daulton, Sait Cakmak, Maximilian Balandat, Michael A. Osborne, Enlu Zhou, Eytan Bakshy. ICML 2022.
23
+
24
+
-[Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces](https://arxiv.org/pdf/2109.10964.pdf).
25
+
Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy. UAI 2022.
26
+
27
+
-[Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes](https://arxiv.org/pdf/2203.11382.pdf).
28
+
Jerry Lin, Raul Astudillo, Peter Frazier, Eytan Bakshy. AISTATS 2022.
29
+
30
+
-[Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation](https://arxiv.org/pdf/2203.09751.pdf).
31
+
Benjamin Letham, Eytan Bakshy, Michael Shvartsman. AISTATS 2022.
32
+
33
+
-[GIBBON: General-purpose Information-Based Bayesian OptimisatioN](https://jmlr.org/papers/volume22/21-0120/21-0120.pdf). Henry B. Moss, David S. Leslie, Javier Gonzalez, Paul Rayson. JMLR 2021.
for Online Decision-making](https://proceedings.neurips.cc/paper/2021/file/325eaeac5bef34937cfdc1bd73034d17-Paper.pdf). Wesley J. Maddox, Samuel Stanton, and Andrew G. Wilson. NeurIPS 2021
36
+
37
+
-[Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs](https://arxiv.org/pdf/2111.06537.pdf).
38
+
Raul Astudillo, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, Peter Frazier. NeurIPS 2021.
39
+
40
+
-[Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement](https://arxiv.org/pdf/2105.08195.pdf).
41
+
Samuel Daulton, Max Balandat, Eytan Bakshy. NeurIPS 2021.
42
+
43
+
-[Bayesian Optimization of Risk Measures](https://proceedings.neurips.cc/paper/2020/hash/e8f2779682fd11fa2067beffc27a9192-Abstract.html). Sait Cakmak, Raul Astudillo Marban, Peter Frazier, Enlu Zhou. NeurIPS 2020.
44
+
21
45
-[Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization](https://proceedings.neurips.cc/paper/2020/hash/6fec24eac8f18ed793f5eaad3dd7977c-Abstract.html). Sam Daulton, Maximilian Balandat, Eytan Bakshy. NeurIPS 2020.
-[Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees](https://proceedings.neurips.cc/paper/2020/hash/d1d5923fc822531bbfd9d87d4760914b-Abstract.html). Shali Jiang, Daniel Jiang, Maximilian Balandat, Brian Karrer, Jacob Gardner, Roman Garnett. NeurIPS 2020.
-[High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization](https://proceedings.neurips.cc/paper/2020/hash/faff959d885ec0ecf70741a846c34d1d-Abstract.html). Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy. NeurIPS 2020.
28
49
-[Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization](https://proceedings.neurips.cc/paper/2020/hash/10fb6cfa4c990d2bad5ddef4f70e8ba2-Abstract.html). Ben Letham, Roberto Calandra, Akshara Rai, Eytan Bakshy. NeurIPS 2020.
29
50
-[PareCO: Pareto-aware Channel Optimization for Slimmable Neural Networks
30
51
](https://arxiv.org/abs/2007.11752). Ting-Wu Chin, Ari S. Morcos, Diana Marculescu. ICML 2020 Workshop on Real World Experiment Design and Active Learning.
31
-
-[High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
32
-
](https://proceedings.mlr.press/v161/eriksson21a.html). David Eriksson, Martin Jankowiak. UAI 2021.
52
+
-[High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces](https://proceedings.mlr.press/v161/eriksson21a.html). David Eriksson, Martin Jankowiak. UAI 2021.
-[GIBBON: General-purpose Information-Based Bayesian Optimisation](https://jmlr.org/papers/v22/21-0120.html). Henry B. Moss, David S. Leslie, Javier Gonzalez, Paul Rayson. JMLR, 2021.
54
+
-[Bayesian Optimization of Function Networks](https://papers.nips.cc/paper/2021/hash/792c7b5aae4a79e78aaeda80516ae2ac-Abstract.html). Raul Astudillo, Peter Frazier. NeurIPS 2021.
35
55
-[Bayesian Optimization with High-Dimensional Outputs](https://papers.nips.cc/paper/2021/hash/a0d3973ad100ad83a64c304bb58677dd-Abstract.html). Wesley J. Maddox, Maximilian Balandat, Andrew G. Wilson, Eytan Bakshy. NeurIPS 2021.
36
-
-[Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement](https://papers.nips.cc/paper/2021/hash/11704817e347269b7254e744b5e22dac-Abstract.html). Samuel Daulton, Maximilian Balandat, Eytan Bakshy. NeurIPS 2021.
37
56
-[Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces](https://papers.nips.cc/paper/2021/hash/44e76e99b5e194377e955b13fb12f630-Abstract.html). Aryan Deshwal, Jana Doppa. NeurIPS 2021.
38
-
-[Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs](https://papers.nips.cc/paper/2021/hash/a8ecbabae151abacba7dbde04f761c37-Abstract.html). Raul Astudillo, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, Peter Frazier. NeurIPS 2021.
39
-
-[Bayesian Optimization of Function Networks](https://papers.nips.cc/paper/2021/hash/792c7b5aae4a79e78aaeda80516ae2ac-Abstract.html). Raul Astudillo, Peter Frazier. NeurIPS 2021.
40
57
-[Improving black-box optimization in VAE latent space using decoder uncertainty](https://papers.nips.cc/paper/2021/hash/06fe1c234519f6812fc4c1baae25d6af-Abstract.html). Pascal Notin, José Miguel Hernández-Lobato, Yarin Gal. NeurIPS 2021
58
+
-[Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs](https://papers.nips.cc/paper/2021/hash/a8ecbabae151abacba7dbde04f761c37-Abstract.html). Raul Astudillo, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, Peter Frazier. NeurIPS 2021.
59
+
-[Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement](https://papers.nips.cc/paper/2021/hash/11704817e347269b7254e744b5e22dac-Abstract.html). Samuel Daulton, Maximilian Balandat, Eytan Bakshy. NeurIPS 2021.
0 commit comments