|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved |
| 4 | + |
| 5 | +r""" |
| 6 | +Batch Knowledge Gradient (KG) via one-shot optimization as introduced in |
| 7 | +[Balandat2019botorch]_. For broader discussion of KG see also |
| 8 | +[Frazier2008knowledge]_, [Wu2016parallelkg]_. |
| 9 | +
|
| 10 | +.. [Balandat2019botorch] |
| 11 | + M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, |
| 12 | + and E. Bakshy. BoTorch: Programmable Bayesian Optimziation in PyTorch. |
| 13 | + ArXiv 2019. |
| 14 | +
|
| 15 | +.. [Frazier2008knowledge] |
| 16 | + P. Frazier, W. Powell, and S. Dayanik. A Knowledge-Gradient policy for |
| 17 | + sequential information collection. SIAM Journal on Control and Optimization, |
| 18 | + 2008. |
| 19 | +
|
| 20 | +.. [Wu2016parallelkg] |
| 21 | + J. Wu and P. Frazier. The parallel knowledge gradient method for batch |
| 22 | + bayesian optimization. NIPS 2016. |
| 23 | +""" |
| 24 | + |
| 25 | +from typing import Optional, Union |
| 26 | + |
| 27 | +import torch |
| 28 | +from torch import Tensor |
| 29 | + |
| 30 | +from .. import settings |
| 31 | +from ..models.model import Model |
| 32 | +from ..sampling.samplers import MCSampler, SobolQMCNormalSampler |
| 33 | +from ..utils.transforms import match_batch_shape |
| 34 | +from .acquisition import AcquisitionFunction, OneShotAcquisitionFunction |
| 35 | +from .analytic import PosteriorMean |
| 36 | +from .monte_carlo import MCAcquisitionFunction, qSimpleRegret |
| 37 | +from .objective import AcquisitionObjective, MCAcquisitionObjective, ScalarizedObjective |
| 38 | + |
| 39 | + |
| 40 | +class qKnowledgeGradient(MCAcquisitionFunction, OneShotAcquisitionFunction): |
| 41 | + r"""Batch Knowledge Gradient using one-shot optimization. |
| 42 | +
|
| 43 | + This computes the batch Knowledge Gradient using fantasies for the outer |
| 44 | + expectation and either the model posterior mean or MC-sampling for the inner |
| 45 | + expectation. |
| 46 | +
|
| 47 | + In addition to the design variables, the input `X` also includes variables |
| 48 | + for the optimal designs for each of the fantasy models. For a fixed number |
| 49 | + of fantasies, all parts of `X` can be optimized in a "one-shot" fashion. |
| 50 | + """ |
| 51 | + |
| 52 | + def __init__( |
| 53 | + self, |
| 54 | + model: Model, |
| 55 | + num_fantasies: Optional[int] = 64, |
| 56 | + sampler: Optional[MCSampler] = None, |
| 57 | + objective: Optional[AcquisitionObjective] = None, |
| 58 | + inner_sampler: Optional[MCSampler] = None, |
| 59 | + X_pending: Optional[Tensor] = None, |
| 60 | + current_value: Optional[Tensor] = None, |
| 61 | + ) -> None: |
| 62 | + r"""q-Knowledge Gradient (one-shot optimization). |
| 63 | +
|
| 64 | + Args: |
| 65 | + model: A fitted model. Must support fantasizing. |
| 66 | + num_fantasies: The number of fantasy points to use. More fantasy |
| 67 | + points result in a better approximation, at the expense of |
| 68 | + memory and wall time. Unused if `sampler` is specified. |
| 69 | + sampler: The sampler used to sample fantasy observations. Optional |
| 70 | + if `num_fantasies` is specified. |
| 71 | + objective: The objective under which the samples are evaluated. If |
| 72 | + `None` or a ScalarizedObjective, then the analytic posterior mean |
| 73 | + is used, otherwise the objective is MC-evaluated (using |
| 74 | + inner_sampler). |
| 75 | + inner_sampler: The sampler used for inner sampling. Ignored if the |
| 76 | + objective is `None` or a ScalarizedObjective. |
| 77 | + X_pending: A `m x d`-dim Tensor of `m` design points that have |
| 78 | + points that have been submitted for function evaluation |
| 79 | + but have not yet been evaluated. |
| 80 | + current_value: The current value, i.e. the expected best objective |
| 81 | + given the observed points `D`. If omitted, forward will not |
| 82 | + return the actual KG value, but the expected best objective |
| 83 | + given the data set `D u X`. |
| 84 | + """ |
| 85 | + if sampler is None: |
| 86 | + if num_fantasies is None: |
| 87 | + raise ValueError( |
| 88 | + "Must specify `num_fantasies` if no `sampler` is provided." |
| 89 | + ) |
| 90 | + # base samples should be fixed for joint optimization over X, X_fantasies |
| 91 | + sampler = SobolQMCNormalSampler( |
| 92 | + num_samples=num_fantasies, resample=False, collapse_batch_dims=True |
| 93 | + ) |
| 94 | + elif num_fantasies is not None: |
| 95 | + if sampler.sample_shape != torch.Size([num_fantasies]): |
| 96 | + raise ValueError( |
| 97 | + f"The sampler shape must match num_fantasies={num_fantasies}." |
| 98 | + ) |
| 99 | + else: |
| 100 | + num_fantasies = sampler.sample_shape[0] |
| 101 | + super().__init__(model=model, sampler=sampler, X_pending=X_pending) |
| 102 | + # if not explicitly specified, we use the posterior mean for linear objs |
| 103 | + if isinstance(objective, MCAcquisitionObjective) and inner_sampler is None: |
| 104 | + inner_sampler = SobolQMCNormalSampler( |
| 105 | + num_samples=128, resample=False, collapse_batch_dims=True |
| 106 | + ) |
| 107 | + self.inner_sampler = inner_sampler |
| 108 | + self.objective = objective |
| 109 | + self.num_fantasies = num_fantasies |
| 110 | + self.current_value = current_value |
| 111 | + |
| 112 | + def forward(self, X: Tensor) -> Tensor: |
| 113 | + r"""Evaluate qKnowledgeGradient on the candidate set `X`. |
| 114 | +
|
| 115 | + Args: |
| 116 | + X: A `b x (q + num_fantasies) x d` Tensor with `b` t-batches of |
| 117 | + `q + num_fantasies` design points each. We split this X tensor |
| 118 | + into two parts in the `q` dimension (`dim=-2`). The first `q` |
| 119 | + are the q-batch of design points and the last num_fantasies are |
| 120 | + the current solutions of the inner optimization problem. |
| 121 | +
|
| 122 | + `X_fantasies = X[..., -num_fantasies:, :]` |
| 123 | + `X_fantasies.shape = b x num_fantasies x d` |
| 124 | +
|
| 125 | + `X_actual = X[..., :-num_fantasies, :]` |
| 126 | + `X_actual.shape = b x q x d` |
| 127 | +
|
| 128 | + Returns: |
| 129 | + A Tensor of shape `b`. For t-batch b, the q-KG value of the design |
| 130 | + `X_actual[b]` is averaged across the fantasy models, where |
| 131 | + `X_fantasies[b, i]` is chosen as the final selection for the |
| 132 | + `i`-th fantasy model. |
| 133 | + NOTE: If `current_value` is not provided, then this is not the |
| 134 | + true KG value of `X_actual[b]`, and `X_fantasies[b, : ]` must be |
| 135 | + maximized at fixed `X_actual[b]`. |
| 136 | + """ |
| 137 | + split_sizes = [X.size(-2) - self.num_fantasies, self.num_fantasies] |
| 138 | + X_actual, X_fantasies = torch.split(X, split_sizes, dim=-2) |
| 139 | + |
| 140 | + # X_fantasies is b x num_fantasies x d, needs to be num_fantasies x b x 1 x d |
| 141 | + # for batch mode evaluation with batch shape num_fantasies x b. |
| 142 | + # b x num_fantasies x d --> num_fantasies x b x d |
| 143 | + X_fantasies = X_fantasies.permute(-2, *range(X_fantasies.dim() - 2), -1) |
| 144 | + # num_fantasies x b x 1 x d |
| 145 | + X_fantasies = X_fantasies.unsqueeze(dim=-2) |
| 146 | + |
| 147 | + # We only concatenate X_pending into the X part after splitting |
| 148 | + if self.X_pending is not None: |
| 149 | + X_actual = torch.cat( |
| 150 | + [X_actual, match_batch_shape(self.X_pending, X_actual)], dim=-2 |
| 151 | + ) |
| 152 | + |
| 153 | + # construct the fantasy model of shape `num_fantasies x b` |
| 154 | + fantasy_model = self.model.fantasize( |
| 155 | + X=X_actual, sampler=self.sampler, observation_noise=True |
| 156 | + ) |
| 157 | + value_function = _get_value_function( |
| 158 | + model=fantasy_model, objective=self.objective, sampler=self.inner_sampler |
| 159 | + ) |
| 160 | + # we need to make sure to propagate gradients to the fantasy model train inputs |
| 161 | + with settings.propagate_grads(True): |
| 162 | + values = value_function(X=X_fantasies) # num_fantasies x b |
| 163 | + |
| 164 | + # average over the fantasy samples |
| 165 | + result = values.mean(dim=0) |
| 166 | + |
| 167 | + if self.current_value is not None: |
| 168 | + result = result - self.current_value |
| 169 | + |
| 170 | + return result |
| 171 | + |
| 172 | + def get_augmented_q_batch_size(self, q: int) -> int: |
| 173 | + r"""Get augmented q batch size for one-shot optimzation. |
| 174 | +
|
| 175 | + Args: |
| 176 | + q: The number of candidates to consider jointly. |
| 177 | +
|
| 178 | + Returns: |
| 179 | + The augmented size for one-shot optimzation (including variables |
| 180 | + parameterizing the fantasy solutions). |
| 181 | + """ |
| 182 | + return q + self.num_fantasies |
| 183 | + |
| 184 | + def extract_candidates(self, X_full: Tensor) -> Tensor: |
| 185 | + r"""We only return X as the set of candidates post-optimization. |
| 186 | +
|
| 187 | + Args: |
| 188 | + X_full: A `b x (q + num_fantasies) x d`-dim Tensor with `b` |
| 189 | + t-batches of `q + num_fantasies` design points each. |
| 190 | +
|
| 191 | + Returns: |
| 192 | + A `b x q x d`-dim Tensor with `b` t-batches of `q` design points each. |
| 193 | + """ |
| 194 | + return X_full[..., : -self.num_fantasies, :] |
| 195 | + |
| 196 | + |
| 197 | +def _get_value_function( |
| 198 | + model: Model, |
| 199 | + objective: Optional[Union[MCAcquisitionObjective, ScalarizedObjective]] = None, |
| 200 | + sampler: Optional[MCSampler] = None, |
| 201 | +) -> AcquisitionFunction: |
| 202 | + r"""Construct value function (i.e. inner acquisition function).""" |
| 203 | + if isinstance(objective, MCAcquisitionObjective): |
| 204 | + return qSimpleRegret(model=model, sampler=sampler, objective=objective) |
| 205 | + else: |
| 206 | + return PosteriorMean(model=model, objective=objective) |
0 commit comments