Skip to content

Commit f8ff7d2

Browse files
Balandatfacebook-github-bot
authored andcommitted
Changelog for version 0.4.0 (#715)
Summary: Pull Request resolved: #715 Reviewed By: danielrjiang Differential Revision: D26608022 Pulled By: Balandat fbshipit-source-id: 18912f05e0f78a6fd84370423ce46e12b0ef8145
1 parent 7d16c54 commit f8ff7d2

File tree

1 file changed

+42
-0
lines changed

1 file changed

+42
-0
lines changed

CHANGELOG.md

Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,48 @@
33
The release log for BoTorch.
44

55

6+
## [0.4.0] - Feb 23, 2021
7+
8+
#### Compatibility
9+
* Require PyTorch >=1.7.1 (#714).
10+
* Require GPyTorch >=1.4 (#714).
11+
12+
#### New Features
13+
* `HigherOrderGP` - High-Order Gaussian Process (HOGP) model for
14+
high-dimensional output regression (#631, #646, #648, #680).
15+
* `qMultiStepLookahead` acquisition function for general look-ahead
16+
optimization approaches (#611, #659).
17+
* `ScalarizedPosteriorMean` and `project_to_sample_points` for more
18+
advanced MFKG functionality (#645).
19+
* Large-scale Thompson sampling tutorial (#654, #713).
20+
* Tutorial for optimizing mixed continuous/discrete domains (application
21+
to multi-fidelity KG with discrete fidelities) (#716).
22+
* `GPDraw` utility for sampling from (exact) GP priors (#655).
23+
* Add `X` as optional arg to call signature of `MCAcqusitionObjective` (#487).
24+
* `OSY` synthetic test problem (#679).
25+
26+
#### Bug Fixes
27+
* Fix matrix multiplication in `scalarize_posterior` (#638).
28+
* Set `X_pending` in `get_acquisition_function` in `qEHVI` (#662).
29+
* Make contextual kernel device-aware (#666).
30+
* Do not use an `MCSampler` in `MaxPosteriorSampling` (#701).
31+
* Add ability to subset outcome transforms (#711).
32+
33+
#### Performance Improvements
34+
* Batchify box decomposition for 2d case (#642).
35+
36+
#### Other Changes
37+
* Use scipy distribution in MES quantile bisect (#633).
38+
* Use new closure definition for GPyTorch priors (#634).
39+
* Allow enabling of approximate root decomposition in `posterior` calls (#652).
40+
* Support for upcoming 21201-dimensional PyTorch `SobolEngine` (#672, #674).
41+
* Refactored various MOO utilities to allow future additions (#656, #657, #658, #661).
42+
* Support input_transform in PairwiseGP (#632).
43+
* Output shape checks for t_batch_mode_transform (#577).
44+
* Check for NaN in `gen_candidates_scipy` (#688).
45+
* Introduce `base_sample_shape` property to `Posterior` objects (#718).
46+
47+
648
## [0.3.3] - Dec 8, 2020
749

850
Contextual Bayesian Optimization, Input Warping, TuRBO, sampling from polytopes.

0 commit comments

Comments
 (0)