diff --git a/program-data-separation/README.md b/program-data-separation/README.md index 2e6aa5cb..9751b4dc 100644 --- a/program-data-separation/README.md +++ b/program-data-separation/README.md @@ -27,5 +27,7 @@ To enable LoRA, we generate: Multiple LoRA-adapted PTE files can share the same foundation weights and adding a model adapted to a new task incurs minimal binary size and runtime memory overhead. +Please take a look at [program-data-separation/cpp/lora_example](lora_example/) for a demo of the program-data separation APIs with LoRA. This example generates and runs a LoRA and a non-LoRA model that share foundation weights. At runtime, we see that memory usage does not double. + ### Requirements LoRA is currently supported on executorch main. [Please install ExecuTorch pip package from source](https://docs.pytorch.org/executorch/stable/using-executorch-building-from-source.html#install-executorch-pip-package-from-source), until executorch==1.0 is released. diff --git a/program-data-separation/cpp/CMakeLists.txt b/program-data-separation/cpp/CMakeLists.txt index 75045c1f..44e83a9e 100644 --- a/program-data-separation/cpp/CMakeLists.txt +++ b/program-data-separation/cpp/CMakeLists.txt @@ -14,30 +14,57 @@ option(EXECUTORCH_BUILD_EXTENSION_TENSOR "" ON) option(EXECUTORCH_BUILD_KERNELS_OPTIMIZED "" ON) option(EXECUTORCH_BUILD_XNNPACK "" ON) -# Add ExecuTorch subdirectory +# Dependencies required for llm runner in lora demo. +if(EXECUTORCH_BUILD_LORA_DEMO) +option(EXECUTORCH_BUILD_EXTENSION_LLM "" ON) +option(EXECUTORCH_BUILD_EXTENSION_LLM_RUNNER "" ON) +option(EXECUTORCH_BUILD_KERNELS_LLM "" ON) +option(EXECUTORCH_BUILD_KERNELS_LLM_AOT "" ON) +endif() + +# Add ExecuTorch subdirectory, after setting options. add_subdirectory("executorch") -set(DEMO_SOURCES linear_example/main.cpp) +set(LINK_LIBS executorch + executorch::extensions + xnnpack_backend + # NOTE: xnnpack_backend has to go before + # kernels otherwise it doesn't get registered. + executorch::kernels + gflags +) + +# Add sources and dependencies. +set(DEMO_SOURCES "") +if(EXECUTORCH_BUILD_LINEAR_DEMO) + list(APPEND DEMO_SOURCES "linear_example/main.cpp") +endif() +if(EXECUTORCH_BUILD_LORA_DEMO) + list(APPEND DEMO_SOURCES "lora_example/main.cpp") +endif() # Create executable add_executable(executorch_program_data_separation ${DEMO_SOURCES}) -# Include directories -target_include_directories(executorch_program_data_separation PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}) - # Link libraries target_link_libraries( executorch_program_data_separation - PRIVATE executorch - extension_module_static - extension_flat_tensor - extension_tensor - xnnpack_backend - portable_ops_lib - portable_kernels - gflags + PRIVATE ${LINK_LIBS} ) +# Include directories for lora demo. +if(EXECUTORCH_BUILD_LORA_DEMO) + # Include directories + target_include_directories(executorch_program_data_separation PRIVATE + ${CMAKE_CURRENT_SOURCE_DIR} + ${CMAKE_CURRENT_SOURCE_DIR}/executorch/extension/llm/tokenizers/include + ) + target_link_libraries( + executorch_program_data_separation + PUBLIC tokenizers::tokenizers + ) +endif() + # Set output directory set_target_properties(executorch_program_data_separation PROPERTIES diff --git a/program-data-separation/cpp/executorch b/program-data-separation/cpp/executorch index 3a021469..035d25c1 160000 --- a/program-data-separation/cpp/executorch +++ b/program-data-separation/cpp/executorch @@ -1 +1 @@ -Subproject commit 3a021469b68708d71b87d2cea8f358a0b86f9977 +Subproject commit 035d25c19bb99fe7b1a1b19babf8117afe1b4d66 diff --git a/program-data-separation/cpp/linear_example/build_example.sh b/program-data-separation/cpp/linear_example/build_example.sh index f94258ae..ce622cf8 100755 --- a/program-data-separation/cpp/linear_example/build_example.sh +++ b/program-data-separation/cpp/linear_example/build_example.sh @@ -7,7 +7,7 @@ mkdir -p build cd build # Configure CMake -cmake -DCMAKE_BUILD_TYPE=Release ../.. +cmake -DCMAKE_BUILD_TYPE=Release -DEXECUTORCH_BUILD_LINEAR_DEMO=True ../.. # Build the project cmake --build . -j$(nproc) diff --git a/program-data-separation/cpp/lora_example/README.md b/program-data-separation/cpp/lora_example/README.md new file mode 100644 index 00000000..a57dfaa5 --- /dev/null +++ b/program-data-separation/cpp/lora_example/README.md @@ -0,0 +1,130 @@ +# ExecuTorch LoRA Demo + +This directory contains the C++ code for the LoRA demo. This demo showcases how to export and run models that share the same architecture without inflating binary file size or runtime memory. + +Specifically, this demo walks through exporting and running a LoRA and non-LoRA llama model without duplication of shared foundation weights on disk or in memory. + +1. Exporting LoRA and non-LoRA llama models, lowered to XNNPACK, with weights in a separate file. +2. Loading and running models with weights in a separate file. +3. Runtime weight sharing via XNNPACK. + +## Size savings. + +Size results will vary depending on the model, quantization and LoRA config. For this demo, we save ~5GB of disk space by storing weights in a separate, sharable file and ~5GB runtime memory by sharing weights at runtime through the XNNPACK weight cache. Detailed results are below. + +### XNNPACK weight sharing. + +The XNNPACK backend is a singleton. Weight sharing is implemented via the XNNPACK weight cache. At delegate init time, XNNPACK checks the weight cache for the weights it needs. If they don't exist, XNNPACK will fetch weights from the NamedDataMap (the API that exposes weights in a PTD file), pack them, store them in the weight cache and free the original. This means we won't keep around multiple copies of the same weights. + +## Virtual environment setup. +Create and activate a Python virtual environment: +```bash +python3 -m venv .venv && source .venv/bin/activate && pip install --upgrade pip +``` +Or alternatively, [install conda on your machine](https://conda.io/projects/conda/en/latest/user-guide/install/index.html) +```bash +conda create -yn executorch-ptd python=3.10.0 && conda activate executorch-ptd +``` + +Install dependencies: +LoRA isn't available in the 0.7.0 release of ExecuTorch. Instead, please install from source until ExecuTorch 1.0 is released. + +[Install ExecuTorch pip package from source](https://docs.pytorch.org/executorch/stable/using-executorch-building-from-source.html#install-executorch-pip-package-from-source). + +Currently, the LoRA changes aren't in nightlies. Once they are in, you can also install from the nightly build. +``` +pip install executorch==0.8.0.devYYYYMMDD --extra-index-url https://download.pytorch.org/whl/nightly/cpu +``` + +## Export the model/s. +Change into the program-data-separation directory and create a directory to hold exported artifacts. +```bash +cd ~/executorch-examples/program-data-separation +mkdir models +``` + +Export models into the `models` directory. The first command will generated undelegated model/data files, and the second will generate XNNPACK-delegated model/data files. +```bash +sh export_lora.sh +``` +Expect the files: +- llama_3_2_1B.pte +- llama_3_2_1B.ptd +- llama_3_2_1B_lora.pte +- foundation_weights.ptd +- tokenizer.model + +llama_3_2_1B.ptd and foundation_weights.ptd contain the same contents, and you can remove llama_3_2_1B.ptd. +tokenizer.model is copied from the temp directory where we downloaded the HF artifacts. It will be used at runtime. + +Note: +- PTE: contains the program execution logic. +- PTD: contains the constant tensors used by the PTE. This format is similar to safetensors, but relying on flatbuffer instead of json for serde. + +Sample file sizes: +``` +-rw-r--r-- 1 lfq users 4943000480 Aug 11 15:55 foundation.ptd +-rw-r--r-- 1 lfq users 1078636416 Aug 11 15:55 llama_3_2_1B_lora.pte +-rw-r--r-- 1 lfq users 1051324736 Aug 11 15:53 llama_3_2_1B.pte +``` + +Notice the lora - llama file size difference is about 27.3MB. This will change depending on the LoRA config. This demo is using the config from https://huggingface.co/lucylq/llama3_1B_lora/blob/main/adapter_config.json +``` +{"r": 64, "lora_alpha": 128, "target_modules": ["q_proj", "v_proj", "o_proj"], "peft_type": "LORA", "base_model_name_or_path": "meta-llama/Llama-3.2-1B-Instruct"} +``` + +## Install runtime dependencies. +The ExecuTorch repository is configured as a git submodule at `~/executorch-examples/program-data-separation/cpp/executorch`. To initialize it: +```bash +cd ~/executorch-examples/ +git submodule sync +git submodule update --init --recursive +``` +Install dev requirements for ExecuTorch: + +```bash +cd ~/executorch-examples/program-data-separation/cpp/executorch +pip install -r requirements-dev.txt +``` + +## Build the runtime. +Install some dependencies: +```bash +cd ~/executorch-examples/program-data-separation/cpp/executorch +sh examples/models/llama/install_requirements.sh +``` + +Build the executable: +```bash +cd ~/executorch-examples/program-data-separation/cpp/lora_example +sh build_example.sh +``` + +## Run the executable. +```bash +cd ~/executorch-examples/program-data-separation/cpp/lora_example + +./build/bin/executorch_program_data_separation --lora_model_path=../../llama_3_2_1B_lora.pte --llama_model_path=../../llama_3_2_1B.pte --tokenizer_path=../../tokenizer.model --foundation_weights_path=../../foundation.ptd +``` + +You should see some logs showing the Resident Set Size (RSS) at various points of the execution. Some sample logs may look like this: + +``` +Generating with llama... +RSS after loading model: 7886.125000 MiB +RSS after prompt prefill: 7886.125000 MiB +RSS after finishing text generation: 7886.125000 MiB + +Generating with lora... +RSS after loading model: 7933.523438 MiB +RSS after prompt prefill: 7933.523438 MiB +RSS after finishing text generation: 7933.523438 MiB +``` +Notice the memory increase of ~47 MiB from running llama model to running lora model. You can see the difference without weight-sharing by removing the flag `-DEXECUTORCH_XNNPACK_ENABLE_WEIGHT_CACHE=True` from `build_example.sh`. + +## Clean up. +```bash +rm -rf build +cd ~/executorch-examples/program-data-separation +rm -rf *.pte *.ptd tokenizer.model +``` diff --git a/program-data-separation/cpp/lora_example/build_example.sh b/program-data-separation/cpp/lora_example/build_example.sh new file mode 100644 index 00000000..0b4d194a --- /dev/null +++ b/program-data-separation/cpp/lora_example/build_example.sh @@ -0,0 +1,15 @@ +#!/bin/bash +set -e + +# Clean and create build directory if it doesn't exist +rm -rf build +mkdir -p build +cd build + +# Configure CMake +cmake -DCMAKE_BUILD_TYPE=Release -DEXECUTORCH_BUILD_LORA_DEMO=True -DEXECUTORCH_XNNPACK_ENABLE_WEIGHT_CACHE=True ../.. + +# Build the project +cmake --build . -j$(nproc) + +echo "Build complete! Executable located at: ./build/bin/executorch_program_data_separation" diff --git a/program-data-separation/cpp/lora_example/main.cpp b/program-data-separation/cpp/lora_example/main.cpp new file mode 100644 index 00000000..815440a5 --- /dev/null +++ b/program-data-separation/cpp/lora_example/main.cpp @@ -0,0 +1,129 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under the BSD-style license found in the + * LICENSE file in the root directory of this source tree. + * @lint-ignore-every CLANGTIDY facebook-hte-Deprecated + */ + +#include +#include +#include + +#include + +#include +#include +#include +#include +#include + +#if defined(ET_USE_THREADPOOL) +#include +#include +#endif + +DEFINE_string(lora_model_path, "llama_3_2_1B_lora.pte", + "LoRA model serialized in flatbuffer format."); +DEFINE_string(llama_model_path, "llama_3_2_1B.pte", + "Model serialized in flatbuffer format."); +DEFINE_string(foundation_weights_path, "foundation.ptd", + "Foundation weights serialized in flatbuffer format."); + +DEFINE_string(tokenizer_path, "tokenizer.model", "Tokenizer stuff."); + +DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt."); + +DEFINE_double(temperature, 0, + "Temperature; Default is 0. 0 = greedy argmax sampling " + "(deterministic). Lower temperature = more deterministic"); + +DEFINE_int32( + seq_len, 128, + "Total number of tokens to generate (prompt + output). Defaults to " + "max_seq_len. If the number of input tokens + seq_len > max_seq_len, the " + "output will be truncated to max_seq_len tokens."); + +using executorch::extension::Module; +using executorch::runtime::Error; +namespace llm = executorch::extension::llm; + +namespace { +static constexpr int32_t kSpecialTokensSize = 256; +static inline std::unique_ptr> +_get_default_special_tokens() { + auto special_tokens = + std::make_unique>(std::vector{ + "<|begin_of_text|>", "<|end_of_text|>", + "<|reserved_special_token_0|>", "<|reserved_special_token_1|>", + "<|finetune_right_pad_id|>", "<|step_id|>", "<|start_header_id|>", + "<|end_header_id|>", "<|eom_id|>", "<|eot_id|>", "<|python_tag|>"}); + // pad the rest of the special tokens with reserved tokens + ssize_t reserved_special_token_num = 2; + while (special_tokens->size() < kSpecialTokensSize) { + special_tokens->emplace_back("<|reserved_special_token_" + + std::to_string(reserved_special_token_num++) + + "|>"); + } + return special_tokens; +} +} // namespace + +int main(int argc, char *argv[]) { + ET_LOG(Info, "Running program-data separation lora example..."); + + gflags::ParseCommandLineFlags(&argc, &argv, true); + + const char *lora_model_path = FLAGS_lora_model_path.c_str(); + const char *llama_model_path = FLAGS_llama_model_path.c_str(); + const char *foundation_weights_path = FLAGS_foundation_weights_path.c_str(); + + const char *tokenizer_path = FLAGS_tokenizer_path.c_str(); + const char *prompt = FLAGS_prompt.c_str(); + float temperature = FLAGS_temperature; + int32_t seq_len = 128; + int32_t cpu_threads = -1; + + // Create tokenizers. + std::unique_ptr tokenizer1 = + llm::load_tokenizer(tokenizer_path, _get_default_special_tokens()); + std::unique_ptr tokenizer2 = + llm::load_tokenizer(tokenizer_path, _get_default_special_tokens()); + + if (tokenizer1 == nullptr || tokenizer2 == nullptr) { + ET_LOG(Info, + "Failed to load %s as a Tiktoken, Sentencepiece or Llama2.c " + "tokenizer, make sure the artifact is one of these types", + tokenizer_path); + return 1; + } + + // Create runners. + std::unique_ptr llama_runner = + llm::create_text_llm_runner(llama_model_path, std::move(tokenizer1), + foundation_weights_path, temperature); + std::unique_ptr lora_runner = + llm::create_text_llm_runner(lora_model_path, std::move(tokenizer2), + foundation_weights_path, temperature); + + // Generate. + llm::GenerationConfig config{.seq_len = seq_len, .temperature = temperature}; + + ET_LOG(Info, "Generating with llama..."); + auto error = llama_runner->generate(prompt, config); + if (error != Error::Ok) { + ET_LOG(Error, "Failed to generate with llama_runner, error code %zu.", + error); + return 1; + } + + error = lora_runner->generate(prompt, config); + if (error != Error::Ok) { + ET_LOG(Error, "Failed to generate with lora_runner, error code %zu.", + error); + return 1; + } + + return 0; +} diff --git a/program-data-separation/export_lora.sh b/program-data-separation/export_lora.sh new file mode 100644 index 00000000..082de33b --- /dev/null +++ b/program-data-separation/export_lora.sh @@ -0,0 +1,53 @@ +#!/bin/bash +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +set -exu + +python -m pip install torchtune==0.7.0.dev20250730 --extra-index-url https://download.pytorch.org/whl/nightly/cpu + +# Download model artifacts from HF. +DOWNLOADED_PATH=$(python -c " +from huggingface_hub import snapshot_download +path=snapshot_download( + repo_id=\"lucylq/llama3_1B_lora\", +) +import os +print(path) +") + +# Copy over tokenizer, for use at runtime. +cp "${DOWNLOADED_PATH}/tokenizer.model" . + +# Export a non-LoRA model with program-data separated. +MODEL="llama_3_2_1B" +python -m executorch.extension.llm.export.export_llm \ + base.checkpoint="${DOWNLOADED_PATH}/consolidated.00.pth" \ + base.params="${DOWNLOADED_PATH}/params.json" \ + base.tokenizer_path="${DOWNLOADED_PATH}/tokenizer.model" \ + model.use_kv_cache=true \ + model.use_sdpa_with_kv_cache=true \ + model.dtype_override="fp32" \ + backend.xnnpack.enabled=true \ + backend.xnnpack.extended_ops=true \ + export.output_name="${MODEL}.pte" \ + export.foundation_weights_file="${MODEL}.ptd" + +# Export a LoRA model, with program and data separated. +LORA_MODEL="llama_3_2_1B_lora" +python -m executorch.extension.llm.export.export_llm \ + base.checkpoint="${DOWNLOADED_PATH}/consolidated.00.pth" \ + base.params="${DOWNLOADED_PATH}/params.json" \ + base.adapter_checkpoint="${DOWNLOADED_PATH}/adapter_model.pt" \ + base.adapter_config="${DOWNLOADED_PATH}/adapter_config.json" \ + base.tokenizer_path="${DOWNLOADED_PATH}/tokenizer.model" \ + model.use_kv_cache=true \ + model.use_sdpa_with_kv_cache=true \ + model.dtype_override="fp32" \ + backend.xnnpack.enabled=true \ + backend.xnnpack.extended_ops=true \ + export.output_name="${LORA_MODEL}.pte" \ + export.foundation_weights_file="foundation.ptd"