@@ -98,23 +98,23 @@ def main():
9898 f"Benchmarking { path .name } , duration: { duration } , codec: { metadata .codec } , averaging over { args .num_exp } runs:"
9999 )
100100
101- height = metadata .height
102- width = metadata .width
103- dimensions = [
104- (int (height * 0.5 ), int (width * 0.5 )),
105- (int (height * 0.25 ), int (width * 0.25 )),
106- (int (height * 0.125 ), int (width * 0.125 )),
107- ]
108- fraction_of_total_frames_to_sample = [0.01 , 0.05 , 0.1 ]
109-
110- for fraction in fraction_of_total_frames_to_sample :
111- print (f"Sampling { fraction * 100 } % of { metadata .num_frames } frames" )
112- num_frames_to_sample = math .ceil (metadata .num_frames * fraction )
101+ input_height = metadata .height
102+ input_width = metadata .width
103+ fraction_of_total_frames_to_sample = [0.005 , 0.01 , 0.05 , 0.1 ]
104+ fraction_of_input_dimensions = [0.5 , 0.25 , 0.125 ]
105+
106+ for num_fraction in fraction_of_total_frames_to_sample :
107+ num_frames_to_sample = math .ceil (metadata .num_frames * num_fraction )
108+ print (
109+ f"Sampling { num_fraction * 100 } %, { num_frames_to_sample } , of { metadata .num_frames } frames"
110+ )
113111 uniform_timestamps = [
114112 i * duration / num_frames_to_sample for i in range (num_frames_to_sample )
115113 ]
116114
117- for dims in dimensions :
115+ for dims_fraction in fraction_of_input_dimensions :
116+ dims = (int (input_height * dims_fraction ), int (input_width * dims_fraction ))
117+
118118 times = bench (
119119 torchvision_resize , path , uniform_timestamps , dims , num_exp = args .num_exp
120120 )
@@ -130,8 +130,8 @@ def main():
130130 report_stats (times , prefix = f"decoder_native_resize({ dims } )" )
131131 print ()
132132
133- center_x = (height - dims [0 ]) // 2
134- center_y = (width - dims [1 ]) // 2
133+ center_x = (input_height - dims [0 ]) // 2
134+ center_y = (input_width - dims [1 ]) // 2
135135 times = bench (
136136 torchvision_crop ,
137137 path ,
0 commit comments