|
1 | 1 | import re |
| 2 | +import subprocess |
2 | 3 |
|
3 | 4 | import pytest |
4 | 5 | import torch |
| 6 | +from torchcodec.decoders import AudioDecoder |
5 | 7 |
|
6 | 8 | from torchcodec.encoders import AudioEncoder |
7 | 9 |
|
| 10 | +from .utils import ( |
| 11 | + get_ffmpeg_major_version, |
| 12 | + in_fbcode, |
| 13 | + NASA_AUDIO_MP3, |
| 14 | + SINE_MONO_S32, |
| 15 | + TestContainerFile, |
| 16 | +) |
| 17 | + |
8 | 18 |
|
9 | 19 | class TestAudioEncoder: |
10 | 20 |
|
| 21 | + def decode(self, source) -> torch.Tensor: |
| 22 | + if isinstance(source, TestContainerFile): |
| 23 | + source = str(source.path) |
| 24 | + return AudioDecoder(source).get_all_samples().data |
| 25 | + |
11 | 26 | def test_bad_input(self): |
12 | 27 | with pytest.raises(ValueError, match="Expected samples to be a Tensor"): |
13 | 28 | AudioEncoder(samples=123, sample_rate=32_000) |
@@ -39,3 +54,210 @@ def test_bad_input(self): |
39 | 54 | match=re.escape(f"Check the desired format? Got format={bad_format}"), |
40 | 55 | ): |
41 | 56 | encoder.to_tensor(format=bad_format) |
| 57 | + |
| 58 | + @pytest.mark.parametrize("method", ("to_file", "to_tensor")) |
| 59 | + def test_bad_input_parametrized(self, method): |
| 60 | + valid_params = ( |
| 61 | + dict(dest="output.mp3") if method == "to_file" else dict(format="mp3") |
| 62 | + ) |
| 63 | + |
| 64 | + decoder = AudioEncoder(self.decode(NASA_AUDIO_MP3), sample_rate=10) |
| 65 | + with pytest.raises(RuntimeError, match="invalid sample rate=10"): |
| 66 | + getattr(decoder, method)(**valid_params) |
| 67 | + |
| 68 | + decoder = AudioEncoder( |
| 69 | + self.decode(NASA_AUDIO_MP3), sample_rate=NASA_AUDIO_MP3.sample_rate |
| 70 | + ) |
| 71 | + with pytest.raises(RuntimeError, match="bit_rate=-1 must be >= 0"): |
| 72 | + getattr(decoder, method)(**valid_params, bit_rate=-1) |
| 73 | + |
| 74 | + bad_num_channels = 10 |
| 75 | + decoder = AudioEncoder(torch.rand(bad_num_channels, 20), sample_rate=16_000) |
| 76 | + with pytest.raises( |
| 77 | + RuntimeError, match=f"Trying to encode {bad_num_channels} channels" |
| 78 | + ): |
| 79 | + getattr(decoder, method)(**valid_params) |
| 80 | + |
| 81 | + decoder = AudioEncoder( |
| 82 | + self.decode(NASA_AUDIO_MP3), sample_rate=NASA_AUDIO_MP3.sample_rate |
| 83 | + ) |
| 84 | + for num_channels in (0, 3): |
| 85 | + with pytest.raises( |
| 86 | + RuntimeError, |
| 87 | + match=re.escape( |
| 88 | + f"Desired number of channels ({num_channels}) is not supported" |
| 89 | + ), |
| 90 | + ): |
| 91 | + getattr(decoder, method)(**valid_params, num_channels=num_channels) |
| 92 | + |
| 93 | + @pytest.mark.parametrize("method", ("to_file", "to_tensor")) |
| 94 | + @pytest.mark.parametrize("format", ("wav", "flac")) |
| 95 | + def test_round_trip(self, method, format, tmp_path): |
| 96 | + # Check that decode(encode(samples)) == samples on lossless formats |
| 97 | + |
| 98 | + if get_ffmpeg_major_version() == 4 and format == "wav": |
| 99 | + pytest.skip("Swresample with FFmpeg 4 doesn't work on wav files") |
| 100 | + |
| 101 | + asset = NASA_AUDIO_MP3 |
| 102 | + source_samples = self.decode(asset) |
| 103 | + |
| 104 | + encoder = AudioEncoder(source_samples, sample_rate=asset.sample_rate) |
| 105 | + |
| 106 | + if method == "to_file": |
| 107 | + encoded_path = str(tmp_path / f"output.{format}") |
| 108 | + encoded_source = encoded_path |
| 109 | + encoder.to_file(dest=encoded_path) |
| 110 | + else: |
| 111 | + encoded_source = encoder.to_tensor(format=format) |
| 112 | + assert encoded_source.dtype == torch.uint8 |
| 113 | + assert encoded_source.ndim == 1 |
| 114 | + |
| 115 | + rtol, atol = (0, 1e-4) if format == "wav" else (None, None) |
| 116 | + torch.testing.assert_close( |
| 117 | + self.decode(encoded_source), source_samples, rtol=rtol, atol=atol |
| 118 | + ) |
| 119 | + |
| 120 | + @pytest.mark.skipif(in_fbcode(), reason="TODO: enable ffmpeg CLI") |
| 121 | + @pytest.mark.parametrize("asset", (NASA_AUDIO_MP3, SINE_MONO_S32)) |
| 122 | + @pytest.mark.parametrize("bit_rate", (None, 0, 44_100, 999_999_999)) |
| 123 | + @pytest.mark.parametrize("num_channels", (None, 1, 2)) |
| 124 | + @pytest.mark.parametrize("format", ("mp3", "wav", "flac")) |
| 125 | + @pytest.mark.parametrize("method", ("to_file", "to_tensor")) |
| 126 | + def test_against_cli(self, asset, bit_rate, num_channels, format, method, tmp_path): |
| 127 | + # Encodes samples with our encoder and with the FFmpeg CLI, and checks |
| 128 | + # that both decoded outputs are equal |
| 129 | + |
| 130 | + if get_ffmpeg_major_version() == 4 and format == "wav": |
| 131 | + pytest.skip("Swresample with FFmpeg 4 doesn't work on wav files") |
| 132 | + |
| 133 | + encoded_by_ffmpeg = tmp_path / f"ffmpeg_output.{format}" |
| 134 | + subprocess.run( |
| 135 | + ["ffmpeg", "-i", str(asset.path)] |
| 136 | + + (["-b:a", f"{bit_rate}"] if bit_rate is not None else []) |
| 137 | + + (["-ac", f"{num_channels}"] if num_channels is not None else []) |
| 138 | + + [ |
| 139 | + str(encoded_by_ffmpeg), |
| 140 | + ], |
| 141 | + capture_output=True, |
| 142 | + check=True, |
| 143 | + ) |
| 144 | + |
| 145 | + encoder = AudioEncoder(self.decode(asset), sample_rate=asset.sample_rate) |
| 146 | + params = dict(bit_rate=bit_rate, num_channels=num_channels) |
| 147 | + if method == "to_file": |
| 148 | + encoded_by_us = tmp_path / f"output.{format}" |
| 149 | + encoder.to_file(dest=str(encoded_by_us), **params) |
| 150 | + else: |
| 151 | + encoded_by_us = encoder.to_tensor(format=format, **params) |
| 152 | + |
| 153 | + if format == "wav": |
| 154 | + rtol, atol = 0, 1e-4 |
| 155 | + elif format == "mp3" and asset is SINE_MONO_S32 and num_channels == 2: |
| 156 | + # Not sure why, this one needs slightly higher tol. With default |
| 157 | + # tolerances, the check fails on ~1% of the samples, so that's |
| 158 | + # probably fine. It might be that the FFmpeg CLI doesn't rely on |
| 159 | + # libswresample for converting channels? |
| 160 | + rtol, atol = 0, 1e-3 |
| 161 | + else: |
| 162 | + rtol, atol = None, None |
| 163 | + torch.testing.assert_close( |
| 164 | + self.decode(encoded_by_ffmpeg), |
| 165 | + self.decode(encoded_by_us), |
| 166 | + rtol=rtol, |
| 167 | + atol=atol, |
| 168 | + ) |
| 169 | + |
| 170 | + @pytest.mark.parametrize("asset", (NASA_AUDIO_MP3, SINE_MONO_S32)) |
| 171 | + @pytest.mark.parametrize("bit_rate", (None, 0, 44_100, 999_999_999)) |
| 172 | + @pytest.mark.parametrize("num_channels", (None, 1, 2)) |
| 173 | + @pytest.mark.parametrize("format", ("mp3", "wav", "flac")) |
| 174 | + def test_to_tensor_against_to_file( |
| 175 | + self, asset, bit_rate, num_channels, format, tmp_path |
| 176 | + ): |
| 177 | + if get_ffmpeg_major_version() == 4 and format == "wav": |
| 178 | + pytest.skip("Swresample with FFmpeg 4 doesn't work on wav files") |
| 179 | + |
| 180 | + encoder = AudioEncoder(self.decode(asset), sample_rate=asset.sample_rate) |
| 181 | + |
| 182 | + params = dict(bit_rate=bit_rate, num_channels=num_channels) |
| 183 | + encoded_file = tmp_path / f"output.{format}" |
| 184 | + encoder.to_file(dest=str(encoded_file), **params) |
| 185 | + encoded_tensor = encoder.to_tensor( |
| 186 | + format=format, bit_rate=bit_rate, num_channels=num_channels |
| 187 | + ) |
| 188 | + |
| 189 | + torch.testing.assert_close( |
| 190 | + self.decode(encoded_file), self.decode(encoded_tensor) |
| 191 | + ) |
| 192 | + |
| 193 | + def test_encode_to_tensor_long_output(self): |
| 194 | + # Check that we support re-allocating the output tensor when the encoded |
| 195 | + # data is large. |
| 196 | + samples = torch.rand(1, int(1e7)) |
| 197 | + encoded_tensor = AudioEncoder(samples, sample_rate=16_000).to_tensor( |
| 198 | + format="flac", bit_rate=44_000 |
| 199 | + ) |
| 200 | + |
| 201 | + # Note: this should be in sync with its C++ counterpart for the test to |
| 202 | + # be meaningful. |
| 203 | + INITIAL_TENSOR_SIZE = 10_000_000 |
| 204 | + assert encoded_tensor.numel() > INITIAL_TENSOR_SIZE |
| 205 | + |
| 206 | + torch.testing.assert_close(self.decode(encoded_tensor), samples) |
| 207 | + |
| 208 | + def test_contiguity(self): |
| 209 | + # Ensure that 2 waveforms with the same values are encoded in the same |
| 210 | + # way, regardless of their memory layout. Here we encode 2 equal |
| 211 | + # waveforms, one is row-aligned while the other is column-aligned. |
| 212 | + # TODO: Ideally we'd be testing all encoding methods here |
| 213 | + |
| 214 | + num_samples = 10_000 # per channel |
| 215 | + contiguous_samples = torch.rand(2, num_samples).contiguous() |
| 216 | + assert contiguous_samples.stride() == (num_samples, 1) |
| 217 | + |
| 218 | + params = dict(format="flac", bit_rate=44_000) |
| 219 | + encoded_from_contiguous = AudioEncoder( |
| 220 | + contiguous_samples, sample_rate=16_000 |
| 221 | + ).to_tensor(**params) |
| 222 | + |
| 223 | + non_contiguous_samples = contiguous_samples.T.contiguous().T |
| 224 | + assert non_contiguous_samples.stride() == (1, 2) |
| 225 | + |
| 226 | + torch.testing.assert_close( |
| 227 | + contiguous_samples, non_contiguous_samples, rtol=0, atol=0 |
| 228 | + ) |
| 229 | + |
| 230 | + encoded_from_non_contiguous = AudioEncoder( |
| 231 | + non_contiguous_samples, sample_rate=16_000 |
| 232 | + ).to_tensor(**params) |
| 233 | + |
| 234 | + torch.testing.assert_close( |
| 235 | + encoded_from_contiguous, encoded_from_non_contiguous, rtol=0, atol=0 |
| 236 | + ) |
| 237 | + |
| 238 | + @pytest.mark.parametrize("num_channels_input", (1, 2)) |
| 239 | + @pytest.mark.parametrize("num_channels_output", (1, 2, None)) |
| 240 | + @pytest.mark.parametrize("method", ("to_file", "to_tensor")) |
| 241 | + def test_num_channels( |
| 242 | + self, num_channels_input, num_channels_output, method, tmp_path |
| 243 | + ): |
| 244 | + # We just check that the num_channels parameter is respected. |
| 245 | + # Correctness is checked in other tests (like test_against_cli()) |
| 246 | + |
| 247 | + sample_rate = 16_000 |
| 248 | + source_samples = torch.rand(num_channels_input, 1_000) |
| 249 | + format = "mp3" |
| 250 | + |
| 251 | + encoder = AudioEncoder(source_samples, sample_rate=sample_rate) |
| 252 | + params = dict(num_channels=num_channels_output) |
| 253 | + |
| 254 | + if method == "to_file": |
| 255 | + encoded_path = str(tmp_path / f"output.{format}") |
| 256 | + encoded_source = encoded_path |
| 257 | + encoder.to_file(dest=encoded_path, **params) |
| 258 | + else: |
| 259 | + encoded_source = encoder.to_tensor(format=format, **params) |
| 260 | + |
| 261 | + if num_channels_output is None: |
| 262 | + num_channels_output = num_channels_input |
| 263 | + assert self.decode(encoded_source).shape[0] == num_channels_output |
0 commit comments