|
| 1 | +# ================================================================================================ |
| 2 | +# Stage 1: Download vLLM wheel and build torchtitan wheel |
| 3 | +# ================================================================================================ |
| 4 | +FROM ubuntu:22.04 AS wheel-downloader |
| 5 | + |
| 6 | +# Install tools needed for downloading and building wheels |
| 7 | +RUN apt-get update && apt-get install -y --no-install-recommends \ |
| 8 | + curl \ |
| 9 | + jq \ |
| 10 | + ca-certificates \ |
| 11 | + git \ |
| 12 | + python3.10 \ |
| 13 | + python3-pip \ |
| 14 | + && rm -rf /var/lib/apt/lists/* |
| 15 | + |
| 16 | +# Download vLLM wheel from GitHub releases |
| 17 | +ARG GITHUB_REPO="meta-pytorch/forge" |
| 18 | +ARG RELEASE_TAG="v0.0.0-93025" |
| 19 | +ARG TORCHTITAN_COMMIT="0cfbd0b3c2d827af629a107a77a9e47229c31663" # From assets/versions.sh - compatible with PyTorch 2.9 |
| 20 | + |
| 21 | +WORKDIR /tmp/download |
| 22 | + |
| 23 | +# Download vLLM wheel |
| 24 | +RUN echo "Fetching vLLM wheel from GitHub release ${RELEASE_TAG}..." && \ |
| 25 | + # Get the release information from GitHub API |
| 26 | + RELEASE_INFO=$(curl -s "https://api.github.com/repos/${GITHUB_REPO}/releases/tags/${RELEASE_TAG}") && \ |
| 27 | + # Extract the vLLM wheel download URL |
| 28 | + VLLM_URL=$(echo "$RELEASE_INFO" | jq -r '.assets[] | select(.name | contains("vllm")) | .browser_download_url' | head -1) && \ |
| 29 | + VLLM_NAME=$(echo "$RELEASE_INFO" | jq -r '.assets[] | select(.name | contains("vllm")) | .name' | head -1) && \ |
| 30 | + echo "Downloading: $VLLM_NAME" && \ |
| 31 | + echo "URL: $VLLM_URL" && \ |
| 32 | + # Download the wheel |
| 33 | + curl -L -o "/tmp/download/${VLLM_NAME}" "${VLLM_URL}" && \ |
| 34 | + echo "vLLM download complete" |
| 35 | + |
| 36 | +# Build torchtitan wheel from specific commit |
| 37 | +RUN echo "Building torchtitan from commit ${TORCHTITAN_COMMIT}..." && \ |
| 38 | + cd /tmp && \ |
| 39 | + git clone https://github.com/pytorch/torchtitan.git && \ |
| 40 | + cd torchtitan && \ |
| 41 | + git checkout ${TORCHTITAN_COMMIT} && \ |
| 42 | + python3 -m pip install --upgrade pip wheel && \ |
| 43 | + pip wheel --no-deps . -w /tmp/download && \ |
| 44 | + echo "torchtitan build complete: $(ls -lh /tmp/download/*.whl)" |
| 45 | + |
| 46 | +# ================================================================================================ |
| 47 | +# Stage 2: Main application image |
| 48 | +# ================================================================================================ |
| 49 | +FROM nvidia/cuda:12.9.1-base-ubuntu22.04 |
| 50 | + |
| 51 | +# Metadata labels |
| 52 | +LABEL maintainer="PyTorch Team" |
| 53 | +LABEL description="Forge - A PyTorch-native agentic RL library for post-training large language models" |
| 54 | +LABEL cuda.version="12.9.1" |
| 55 | +LABEL python.version="3.10" |
| 56 | + |
| 57 | +# Set environment to avoid interactive prompts during build |
| 58 | +ENV DEBIAN_FRONTEND=noninteractive |
| 59 | + |
| 60 | +# ================================================================================================ |
| 61 | +# Install system dependencies |
| 62 | +# ================================================================================================ |
| 63 | +RUN apt-get update && apt-get install -y --no-install-recommends \ |
| 64 | + # Build tools (needed for compiling Python extensions) |
| 65 | + build-essential \ |
| 66 | + git \ |
| 67 | + curl \ |
| 68 | + ca-certificates \ |
| 69 | + # RDMA/InfiniBand libraries for distributed training |
| 70 | + libibverbs1 \ |
| 71 | + libibverbs-dev \ |
| 72 | + rdma-core \ |
| 73 | + libmlx5-1 \ |
| 74 | + && rm -rf /var/lib/apt/lists/* |
| 75 | + |
| 76 | +# ================================================================================================ |
| 77 | +# Set up CUDA environment variables |
| 78 | +# ================================================================================================ |
| 79 | +# These environment variables match those set by cuda_env.sh in the installation script |
| 80 | +ENV CUDA_VERSION=12.9 |
| 81 | +ENV CUDA_HOME=/usr/local/cuda-${CUDA_VERSION} |
| 82 | +ENV NVCC=${CUDA_HOME}/bin/nvcc |
| 83 | +ENV CUDA_NVCC_EXECUTABLE=${CUDA_HOME}/bin/nvcc |
| 84 | +ENV CUDA_INCLUDE_DIRS=${CUDA_HOME}/include |
| 85 | +ENV CUDA_CUDART_LIBRARY=${CUDA_HOME}/lib64/libcudart.so |
| 86 | + |
| 87 | +# Add CUDA binaries to PATH |
| 88 | +ENV PATH="${CUDA_HOME}/bin:${PATH}" |
| 89 | + |
| 90 | +# Add CUDA compat libs to LD_LIBRARY_PATH |
| 91 | +# This is critical for PyTorch and vLLM to find CUDA libraries |
| 92 | +ENV LD_LIBRARY_PATH="${CUDA_HOME}/compat:${LD_LIBRARY_PATH}" |
| 93 | + |
| 94 | +# Temporary flag required by Monarch |
| 95 | +ENV MONARCH_HOST_MESH_V1_REMOVE_ME_BEFORE_RELEASE=1 |
| 96 | + |
| 97 | +# Create symlink if /usr/local/cuda-12.9 doesn't exist but /usr/local/cuda does |
| 98 | +RUN if [ ! -d "/usr/local/cuda-12.9" ] && [ -d "/usr/local/cuda" ]; then \ |
| 99 | + ln -s /usr/local/cuda /usr/local/cuda-12.9; \ |
| 100 | + fi |
| 101 | + |
| 102 | +# ================================================================================================ |
| 103 | +# Install uv package manager |
| 104 | +# ================================================================================================ |
| 105 | +# Install uv - a fast Python package installer |
| 106 | +RUN curl -LsSf https://astral.sh/uv/install.sh | sh && \ |
| 107 | + # Make uv available in PATH |
| 108 | + ln -s /root/.local/bin/uv /usr/local/bin/uv && \ |
| 109 | + ln -s /root/.local/bin/uvx /usr/local/bin/uvx |
| 110 | + |
| 111 | +# Set working directory early so venv is created in project directory |
| 112 | +WORKDIR /workspace |
| 113 | + |
| 114 | +# Install Python 3.10 via uv (required by monarch wheel cp310) |
| 115 | +RUN uv python install 3.10 && \ |
| 116 | + # Create a virtual environment at project location using uv-managed Python 3.10 |
| 117 | + uv venv --python 3.10 .venv |
| 118 | + |
| 119 | +# Activate the virtual environment by adding it to PATH |
| 120 | +ENV PATH="/workspace/.venv/bin:${PATH}" |
| 121 | +ENV VIRTUAL_ENV="/workspace/.venv" |
| 122 | + |
| 123 | +# Add uv-managed Python library path to LD_LIBRARY_PATH for monarch |
| 124 | +# Monarch needs libpython3.10.so.1.0 which is provided by uv's Python installation |
| 125 | +ENV LD_LIBRARY_PATH="/root/.local/share/uv/python/cpython-3.10.19-linux-x86_64-gnu/lib:${LD_LIBRARY_PATH}" |
| 126 | + |
| 127 | +# ================================================================================================ |
| 128 | +# Install PyTorch nightly with uv |
| 129 | +# ================================================================================================ |
| 130 | +# Install PyTorch nightly with CUDA 12.9 support |
| 131 | +# This is a large download and should be in its own layer for caching |
| 132 | +ARG PYTORCH_VERSION="2.9.0.dev20250905" |
| 133 | +RUN uv pip install --no-cache \ |
| 134 | + torch==${PYTORCH_VERSION} \ |
| 135 | + --index-url https://download.pytorch.org/whl/nightly/cu129 |
| 136 | + |
| 137 | +# ================================================================================================ |
| 138 | +# Install pre-built wheels |
| 139 | +# ================================================================================================ |
| 140 | +# Create temporary directory for wheels |
| 141 | +RUN mkdir -p /tmp/wheels |
| 142 | + |
| 143 | +# Copy local wheels from assets directory (excluding torchtitan - we build it fresh) |
| 144 | +COPY assets/wheels/monarch*.whl assets/wheels/torchstore*.whl /tmp/wheels/ |
| 145 | + |
| 146 | +# Copy downloaded vLLM and built torchtitan wheels from stage 1 |
| 147 | +COPY --from=wheel-downloader /tmp/download/*.whl /tmp/wheels/ |
| 148 | + |
| 149 | +# Install all wheels using uv |
| 150 | +# The wheels include: monarch, torchstore, freshly-built torchtitan, and vLLM |
| 151 | +RUN uv pip install --no-cache /tmp/wheels/*.whl && \ |
| 152 | + rm -rf /tmp/wheels |
| 153 | + |
| 154 | +# ================================================================================================ |
| 155 | +# Install Forge |
| 156 | +# ================================================================================================ |
| 157 | +# Copy the entire source tree |
| 158 | +# .dockerignore will exclude unnecessary files |
| 159 | +COPY . /workspace/ |
| 160 | + |
| 161 | +# Install Forge in production mode (not editable) |
| 162 | +# This installs the forge package and its dependencies |
| 163 | +RUN uv pip install --no-cache . |
| 164 | + |
| 165 | +# ================================================================================================ |
| 166 | +# Final setup |
| 167 | +# ================================================================================================ |
| 168 | +# Verify installations (basic import checks that don't require GPU) |
| 169 | +# The virtual environment is activated via PATH, so python uses the venv |
| 170 | +RUN python -c "import torch; print(f'PyTorch version: {torch.__version__}')" && \ |
| 171 | + python -c "import vllm; print('vLLM imported successfully')" && \ |
| 172 | + python -c "import forge; print('Forge imported successfully')" |
| 173 | + |
| 174 | +# Set default command to bash for interactive use |
| 175 | +# Users can override this when running the container |
| 176 | +CMD ["/bin/bash"] |
0 commit comments