|
| 1 | +MM> READ "big-unifier-bad1.mm" |
| 2 | +Reading source file "big-unifier-bad1.mm"... 3369 bytes |
| 3 | +3369 bytes were read into the source buffer. |
| 4 | +The source has 28 statements; 4 are $a and 1 are $p. |
| 5 | +No errors were found. However, proofs were not checked. Type VERIFY PROOF * |
| 6 | +if you want to check them. |
| 7 | +MM> Continuous scrolling is now in effect. |
| 8 | +MM> 0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% |
| 9 | +.................................................. |
| 10 | +?Error on line 68 of file "big-unifier-bad1.mm" at statement 28, label |
| 11 | +"theorem1", type "$p": |
| 12 | + FFZMPAFFZFPFQPFZFLRFFLNKMJAJNQPLAPGPMKBADCEOARLIH $. |
| 13 | + ^ |
| 14 | +The hypotheses of statement "ax-mp" at proof step 82 cannot be unified. |
| 15 | + Hypothesis 1: wff x |
| 16 | + Step 78: wff e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u |
| 17 | +) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) |
| 18 | +) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , |
| 19 | +v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , |
| 20 | +u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) |
| 21 | +) , v ) , e ( x , v ) ) , x ) ) ) , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) |
| 22 | +, u ) ) ) ) , e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) |
| 23 | +) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) |
| 24 | +, v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) |
| 25 | +, u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) |
| 26 | +) ) , v ) , e ( x , v ) ) , x ) ) ) ) |
| 27 | + Hypothesis 2: wff y |
| 28 | + Step 79: wff x |
| 29 | + Hypothesis 3: |- x |
| 30 | + Step 80: wff e ( e ( e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u |
| 31 | +, z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) , e ( e ( e ( e ( e ( e ( x , e ( |
| 32 | +y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , |
| 33 | +e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e |
| 34 | +( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( |
| 35 | +y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) |
| 36 | +) , e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( |
| 37 | +e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e ( |
| 38 | +e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x |
| 39 | +, v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e ( |
| 40 | +e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e |
| 41 | +( x , v ) ) , x ) ) ) , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) ) |
| 42 | +, e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e |
| 43 | +( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( |
| 44 | +x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e |
| 45 | +( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , |
| 46 | +e ( x , v ) ) , x ) ) ) ) ) , e ( x , e ( e ( e ( x , e ( y , e ( e ( e ( y , z |
| 47 | +) , e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , |
| 48 | +e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( |
| 49 | +u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , |
| 50 | +z ) , e ( u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , |
| 51 | +e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) , e ( y , e ( e ( e ( y |
| 52 | +, z ) , e ( u , z ) ) , u ) ) ) ) , e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) |
| 53 | +, e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e |
| 54 | +( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y |
| 55 | +, z ) , e ( u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) |
| 56 | +, e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) ) ) ) , x ) ) , e ( e |
| 57 | +( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e |
| 58 | +( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( |
| 59 | +x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e |
| 60 | +( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , |
| 61 | +e ( x , v ) ) , x ) ) ) , e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , |
| 62 | +z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) |
| 63 | +) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , |
| 64 | +u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( u |
| 65 | +, z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) |
| 66 | +) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) , e ( y , e ( e ( e ( y , z ) , e ( |
| 67 | +u , z ) ) , u ) ) ) ) , e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z |
| 68 | +) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) |
| 69 | +, u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( e ( y , e ( e ( e ( y , z ) , e ( |
| 70 | +u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z |
| 71 | +) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) ) ) , e ( x , e ( e ( e ( x , e ( |
| 72 | +y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , |
| 73 | +e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e ( |
| 74 | +e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( e |
| 75 | +( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y , |
| 76 | +e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) , |
| 77 | +e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) ) , e ( e ( e ( x , e ( y |
| 78 | +, e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , e ( e ( e ( e ( x , e ( y , e |
| 79 | +( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) , e ( |
| 80 | +e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) , e ( e ( e ( e ( x , e ( y |
| 81 | +, e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) , x ) ) ) |
| 82 | +) ) ) ) |
| 83 | + Hypothesis 4: |- e ( x , y ) |
| 84 | + Step 81: wff e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u |
| 85 | +) ) ) , v ) , e ( x , v ) ) |
| 86 | + |
0 commit comments