@@ -129744,6 +129744,174 @@ then the Limited Principle of Omniscience (LPO) implies excluded middle.
129744
129744
JOABECWKWM $.
129745
129745
$}
129746
129746
129747
+ ${
129748
+ ctiunct.som $e |- ( ph -> S C_ _om ) $.
129749
+ ctiunct.sdc $e |- ( ph -> A. n e. _om DECID n e. S ) $.
129750
+ ctiunct.f $e |- ( ph -> F : S -onto-> A ) $.
129751
+ ctiunct.tom $e |- ( ( ph /\ x e. A ) -> T C_ _om ) $.
129752
+ ctiunct.tdc $e |- ( ( ph /\ x e. A ) -> A. n e. _om DECID n e. T ) $.
129753
+ ctiunct.g $e |- ( ( ph /\ x e. A ) -> G : T -onto-> B ) $.
129754
+ ctiunct.j $e |- ( ph -> J : _om -1-1-onto-> ( _om X. _om ) ) $.
129755
+ ctiunct.u $e |- U = { z e. _om | ( ( 1st ` ( J ` z ) ) e. S
129756
+ /\ ( 2nd ` ( J ` z ) ) e. [_ ( F ` ( 1st ` ( J ` z ) ) ) / x ]_ T ) } $.
129757
+
129758
+ ${
129759
+ $d F z $. $d J z $. $d N z $. $d S z $. $d T z $. $d x z $.
129760
+ ctiunctlem.n $e |- ( ph -> N e. U ) $.
129761
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129762
+ ctiunctlemu1st $p |- ( ph -> ( 1st ` ( J ` N ) ) e. S ) $=
129763
+ ( cfv c1st wcel c2nd csb com wa cv 2fveq3 eleq1d fveq2d csbeq1d eleq12d
129764
+ wceq anbi12d elrab2 sylib simprd simpld ) AMLUCZUDUCZFUEZVBUFUCZBVCJUCZ
129765
+ GUGZUEZAMUHUEZVDVHUIZAMHUEVIVJUIUBCUJZLUCZUDUCZFUEZVLUFUCZBVMJUCZGUGZUE
129766
+ ZUIVJCMUHHVKMUPZVNVDVRVHVSVMVCFVKMUDLUKZULVSVOVEVQVGVKMUFLUKVSBVPVFGVSV
129767
+ MVCJVTUMUNUOUQUAURUSUTVA $.
129768
+
129769
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129770
+ ctiunctlemu2nd $p |- ( ph -> ( 2nd ` ( J ` N ) )
129771
+ e. [_ ( F ` ( 1st ` ( J ` N ) ) ) / x ]_ T ) $=
129772
+ ( cfv c1st wcel c2nd csb com wa cv 2fveq3 eleq1d fveq2d csbeq1d eleq12d
129773
+ wceq anbi12d elrab2 sylib simprd ) AMLUCZUDUCZFUEZVAUFUCZBVBJUCZGUGZUEZ
129774
+ AMUHUEZVCVGUIZAMHUEVHVIUIUBCUJZLUCZUDUCZFUEZVKUFUCZBVLJUCZGUGZUEZUIVICM
129775
+ UHHVJMUPZVMVCVQVGVRVLVBFVJMUDLUKZULVRVNVDVPVFVJMUFLUKVRBVOVEGVRVLVBJVSU
129776
+ MUNUOUQUAURUSUTUT $.
129777
+ $}
129778
+
129779
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129780
+ ctiunctlemuom $p |- ( ph -> U C_ _om ) $=
129781
+ ( com wss cv cfv c1st wcel c2nd csb wa crab ssrab2 eqsstri a1i ) HUAUBAHC
129782
+ UCLUDZUEUDZFUFUNUGUDBUOJUDGUHUFUIZCUAUJUATUPCUAUKULUM $.
129783
+
129784
+ ${
129785
+ $d A x $. $d F n x $. $d F x z $. $d J n x $. $d J x z $. $d S n $.
129786
+ $d S z $. $d T n $. $d T z $. $d U m n $. $d m ph x $. $d m x z $.
129787
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129788
+ ctiunctlemudc $p |- ( ph -> A. n e. _om DECID n e. U ) $=
129789
+ ( vm cv wcel wdc com wral wa cfv c1st c2nd csb wn wceq eleq1 adantr cxp
129790
+ dcbid wf1o f1of syl simpr ffvelrnd xp1st rspcdva wfo ad2antrr ralrimiva
129791
+ wf fof nfcv nfcsb1v nfcri nfdc nfralya csbeq1a eleq2d ralbidv rspc sylc
129792
+ xp2nd dcan wo intnanrd olcd df-dc sylibr exmiddc mpjaodan adantl 2fveq3
129793
+ wb eleq1d fveq2d csbeq1d eleq12d anbi12d elrab2 syl6rbbr mpbird cbvralv
129794
+ ibar sylib ) AUAUBZHUCZUDZUAUEUFIUBZHUCZUDZIUEUFAXEUAUEAXCUEUCZUGZXEXCL
129795
+ UHZUIUHZFUCZXKUJUHZBXLJUHZGUKZUCZUGZUDZXJXMXSXMULZXJXMUGZXMUDZXQUDZXSXJ
129796
+ YBXMXJXFFUCZUDZYBIUEXLXFXLUMYDXMXFXLFUNUQAYEIUEUFXINUOXJXKUEUEUPZUCZXLU
129797
+ EUCXJUEYFXCLXJUEYFLURZUEYFLVHAYHXISUOUEYFLUSUTAXIVAVBZXKUEUEVCUTVDZUOYA
129798
+ XFXPUCZUDZYCIUEXNXFXNUMYKXQXFXNXPUNUQYAXODUCXFGUCZUDZIUEUFZBDUFZYLIUEUF
129799
+ ZYAFDXLJAFDJVHZXIXMAFDJVEYROFDJVIUTVFXJXMVAVBAYPXIXMAYOBDQVGVFYOYQBXODY
129800
+ LBIUEBUEVJYKBBIXPBXOGVKVLVMVNBUBXOUMZYNYLIUEYSYMYKYSGXPXFBXOGVOVPUQVQVR
129801
+ VSYAYGXNUEUCXJYGXMYIUOXKUEUEVTUTVDXMXQWAVSXJXTUGZXRXRULZWBXSYTUUAXRYTXM
129802
+ XQXJXTVAWCWDXRWEWFXJYBXMXTWBYJXMWGUTWHXJXDXRXJXRXIXRUGZXDXIXRUUBWKAXIXR
129803
+ XAWICUBZLUHZUIUHZFUCZUUDUJUHZBUUEJUHZGUKZUCZUGXRCXCUEHUUCXCUMZUUFXMUUJX
129804
+ QUUKUUEXLFUUCXCUILWJZWLUUKUUGXNUUIXPUUCXCUJLWJUUKBUUHXOGUUKUUEXLJUULWMW
129805
+ NWOWPTWQWRUQWSVGXEXHUAIUEXCXFUMXDXGXCXFHUNUQWTXB $.
129806
+ $}
129807
+
129808
+ ctiunct.h $e |- H = ( n e. U |-> ( [_ ( F ` ( 1st ` ( J ` n ) ) ) / x ]_ G
129809
+ ` ( 2nd ` ( J ` n ) ) ) ) $.
129810
+
129811
+ ${
129812
+ $d A n x y $. $d B n y $. $d F x y $. $d F z $. $d G y $.
129813
+ $d J x y $. $d J z $. $d S z $. $d T z $. $d U n $. $d n ph x $.
129814
+ $d x n z $.
129815
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129816
+ ctiunctlemf $p |- ( ph -> H : U --> U_ x e. A B ) $=
129817
+ ( vy cv cfv c2nd c1st csb ciun wcel wrex wfo adantr fof syl com wss wdc
129818
+ wa wral adantlr cxp wf1o simpr ctiunctlemu1st ffvelrnd ralrimiva rspsbc
129819
+ wf wsbc sylc wb sbcfg mpbid ctiunctlemu2nd csbeq1 eleq2d rspcev syl2anc
129820
+ wceq eliun sylibr nfcv nfcsb1v csbeq1a cbviun syl6eleqr fmptd ) AIHIUDZ
129821
+ MUEZUFUEZBWJUGUEZJUEZKUHZUEZBDEUIZLAWIHUJZUSZWOUCDBUCUDZEUHZUIZWPWRWOWT
129822
+ UJZUCDUKZWOXAUJWRWMDUJZWOBWMEUHZUJZXCWRFDWLJWRFDJULZFDJVIAXGWQPUMZFDJUN
129823
+ UOWRBCDEFGHIJKMWIAFUPUQWQNUMZAWIFUJURIUPUTWQOUMZXHABUDDUJZGUPUQWQQVAZAX
129824
+ KWIGUJURIUPUTWQRVAZAXKGEKULZWQSVAZAUPUPUPVBMVCWQTUMZUAAWQVDZVEVFZWRBWMG
129825
+ UHZXEWKWNWRGEKVIZBWMVJZXSXEWNVIZWRXDXTBDUTZYAXRAYCWQAXTBDAXKUSXNXTSGEKU
129826
+ NUOVGUMXTBWMDVHVKWRXDYAYBVLXRBGEKDWMVMUOVNWRBCDEFGHIJKMWIXIXJXHXLXMXOXP
129827
+ UAXQVOVFXBXFUCWMDWSWMVTWTXEWOBWSWMEVPVQVRVSUCWODWTWAWBBUCDEWTUCEWCBWSEW
129828
+ DBWSEWEWFWGUBWH $.
129829
+ $}
129830
+
129831
+ ${
129832
+ $d A n r w x $. $d A r u v w x $. $d B n r w $. $d B r u v w $.
129833
+ $d F n r x $. $d F r x z $. $d G n r w $. $d H r u v w $. $d J n x $.
129834
+ $d J v x $. $d J x z $. $d S r z $. $d T r w z $. $d U n r w $.
129835
+ $d U r u v w $. $d n ph r w x $. $d ph r u w x $. $d n z $.
129836
+ ctiunct.nfh $e |- F/_ x H $.
129837
+ ctiunct.nfu $e |- F/_ x U $.
129838
+ $( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129839
+ ctiunctlemfo $p |- ( ph -> H : U -onto-> U_ x e. A B ) $=
129840
+ ( vu vv vw vr ciun wf cv cfv wceq wrex wral wfo ctiunctlemf wcel wa nfv
129841
+ nfiu1 nfcri nfan nfcv nffv nfeq2 nfrexxy simplll simplr foelrn sylancom
129842
+ syl2anc ad4antr simpllr cop ccnv com c1st c2nd csb cxp wf1o f1ocnv f1of
129843
+ syl ad5antr wss simprl sseldd simp-5l adantr simplrl ffvelrnd f1ocnvfv2
129844
+ opelxpd fveq2d op1st syl6eq eqeltrd op2nd simprr eqtr4d csbeq1d 3eltr4d
129845
+ vex csbid 2fveq3 eleq1d eleq12d anbi12d elrab2 sylanbrc fveq12d simplrr
129846
+ jca eqeltrrd fvmptd3 3eqtr4rd fveq2 rspceeqv rexlimddv biimpi r19.29af2
129847
+ eliun adantl ralrimiva dffo3 ) AHBDEUIZLUJUEUKZUFUKZLULZUMZUFHUNZUEYHUO
129848
+ HYHLUPABCDEFGHIJKLMNOPQRSTUAUBUQAYMUEYHAYIYHURZUSZYIEURZYMBDAYNBABUTBUE
129849
+ YHBDEVAVBVCYLBUFHUDBYIYKBYJLUCBYJVDVEVFVGYOBUKZDURZUSZYPUSZYIUGUKZKULZU
129850
+ MZYMUGGYSYPGEKUPZUUCUGGUNYTAYRUUDAYNYRYPVHYOYRYPVISVLUGGEYIKVJVKYTUUAGU
129851
+ RZUUCUSZUSZYQUHUKZJULZUMZYMUHFUUGFDJUPZYRUUJUHFUNAUUKYNYRYPUUFPVMYOYRYP
129852
+ UUFVNZUHFDYQJVJVLUUGUUHFURZUUJUSZUSZUUHUUAVOZMVPZULZHURZYIUURLULZUMYMUU
129853
+ OUURVQURUURMULZVRULZFURZUVAVSULZBUVBJULZGVTZURZUSZUUSUUOVQVQWAZVQUUPUUQ
129854
+ AUVIVQUUQUJZYNYRYPUUFUUNAUVIVQUUQWBZUVJAVQUVIMWBZUVKTVQUVIMWCWEUVIVQUUQ
129855
+ WDWEWFUUOUUHUUAVQVQUUOFVQUUHAFVQWGYNYRYPUUFUUNNWFUUGUUMUUJWHZWIUUOGVQUU
129856
+ AUUOAYRGVQWGAYNYRYPUUFUUNWJZUUGYRUUNUULWKQVLYTUUEUUCUUNWLZWIWOZWMUUOUVC
129857
+ UVGUUOUVBUUHFUUOUVBUUPVRULUUHUUOUVAUUPVRUUOUVLUUPUVIURUVAUUPUMUUOAUVLUV
129858
+ NTWEUVPVQUVIUUPMWNVLZWPUUHUUAUHXEZUGXEZWQWRZUVMWSUUOUUAGUVDUVFUVOUUOUVD
129859
+ UUPVSULUUAUUOUVAUUPVSUVQWPUUHUUAUVRUVSWTWRZUUOUVFBYQGVTGUUOBUVEYQGUUOUV
129860
+ EUUIYQUUOUVBUUHJUVTWPUUGUUMUUJXAXBZXCBGXFWRXDXOCUKZMULZVRULZFURZUWDVSUL
129861
+ ZBUWEJULZGVTZURZUSUVHCUURVQHUWCUURUMZUWFUVCUWJUVGUWKUWEUVBFUWCUURVRMXGZ
129862
+ XHUWKUWGUVDUWIUVFUWCUURVSMXGUWKBUWHUVEGUWKUWEUVBJUWLWPXCXIXJUAXKXLZUUOU
129863
+ VDBUVEKVTZULZUUBUUTYIUUOUVDUUAUWNKUUOUWNBYQKVTKUUOBUVEYQKUWBXCBKXFWRUWA
129864
+ XMZUUOIUURIUKZMULZVSULZBUWRVRULZJULZKVTZULUWOHLEUBUWQUURUMZUWSUVDUXBUWN
129865
+ UXCBUXAUVEKUXCUWTUVBJUWQUURVRMXGWPXCUWQUURVSMXGXMUWMUUOYIUWOEUUOYIUUBUW
129866
+ OYTUUEUUCUUNXNZUWPXBYSYPUUFUUNVNXPXQUXDXRUFUURHYKUUTYIYJUURLXSXTVLYAYAY
129867
+ NYPBDUNZAYNUXEBYIDEYDYBYEYCYFUFUEHYHLYGXL $.
129868
+ $}
129869
+ $}
129870
+
129871
+ ${
129872
+ $d A h j k x $. $d A j k n u x z $. $d A k n u w x z $. $d B h j k $.
129873
+ $d B j k n u z $. $d B k n u w z $. $d F k n u w x z $.
129874
+ $d G k n u w z $. $d j n ph x $.
129875
+ ctiunct.a $e |- ( ph -> F : _om -onto-> ( A |_| 1o ) ) $.
129876
+ ctiunct.b $e |- ( ( ph /\ x e. A )
129877
+ -> G : _om -onto-> ( B |_| 1o ) ) $.
129878
+ $( The union of countably many countable sets is countable. The
129879
+ construction here is constructive in the sense that the hypothesis
129880
+ provides a specific class for ` G ` in terms of ` x ` , as opposed to a
129881
+ construction of the form ` A. x e. A E. g ` . Countable choice would be
129882
+ needed to turn the latter into the former.
129883
+
129884
+ The proof proceeds by mapping a natural number to a pair of natural
129885
+ numbers (by ~ xpomen ) and using the first number to map to an element
129886
+ ` x ` of ` A ` and the second number to map to an element of B(x) . In
129887
+ this way we are able to map to every element of ` U_ x e. A B ` .
129888
+ Although it would be possible to work directly with countability
129889
+ expressed as ` F : _om -onto-> ( A |_| 1o ) ` , we instead use functions
129890
+ from subsets of the natural numbers via ~ ctssdccl and ~ ctssdc .
129891
+
129892
+ (Contributed by Jim Kingdon, 31-Oct-2023.) $)
129893
+ ctiunct $p |- ( ph -> E. h h : _om -onto-> ( U_ x e. A B |_| 1o ) ) $=
129894
+ ( vk vn vz vw com cv wfo wex wcel cfv eqid cxp wf1o ciun c1o cdju cen wbr
129895
+ vj vu xpomen ensymi bren mpbi a1i wa wss wdc wral w3a c1st cinl cima crab
129896
+ c2nd ccnv ccom ctssdccl simp1d adantr simp3d simp2d adantlr ctiunctlemuom
129897
+ csb simpr cmpt nfv nfcsb1v nfel2 nfan nfcv nfrabxy nffv ctiunctlemfo omex
129898
+ nfmpt rabex mptex foeq1 spcev ctiunctlemudc wceq sseq1 foeq2 exbidv eleq2
129899
+ syl dcbid ralbidv 3anbi123d syl3anc ctssdc cbvexv bitri sylib exlimddv )
129900
+ ANNNUAZUHOZUBZNBCDUCZUDUEZEOZPZEQZUHXIUHQZANXGUFUGXOXGNUJUKNXGUHULUMUNAXI
129901
+ UOZUIOZNUPZXQXJJOZPZJQZKOZXQRZUQZKNURZUSZUIQZXNXPLOXHSZUTSZMOZFSVACVBRMNV
129902
+ CZRZYHVDSZBYIVAVEZFVFZSZYJGSVADVBRMNVCZVNZRZUOZLNVCZNUPZUUAXJXSPZJQZYBUUA
129903
+ RZUQZKNURZYGXPBLCDYKYQUUAKYOYNGVFZXHAYKNUPZXIAUUIYKCYOPZYBYKRUQKNURZAMCYK
129904
+ KFYOHYKTYOTVGZVHVIZAUUKXIAUUIUUJUUKUULVJVIZAUUJXIAUUIUUJUUKUULVKVIZABOCRZ
129905
+ YQNUPZXIAUUPUOZUUQYQDUUHPZYBYQRUQKNURZUURMDYQKGUUHIYQTUUHTVGZVHVLZAUUPUUT
129906
+ XIUURUUQUUSUUTUVAVJVLZAUUPUUSXIUURUUQUUSUUTUVAVKVLZAXIVOZUUATZVMXPUUAXJKU
129907
+ UAYBXHSZVDSZBUVGUTSYOSZUUHVNZSZVPZPZUUDXPBLCDYKYQUUAKYOUUHUVLXHUUMUUNUUOU
129908
+ VBUVCUVDUVEUVFUVLTBKUUAUVKYTBLNYLYSBYLBVQBYMYRBYPYQVRVSVTBNWAWBZBUVHUVJBU
129909
+ VIUUHVRBUVHWAWCWFUVNWDUUCUVMJUVLKUUAUVKYTLNWEWGZWHUUAXJXSUVLWIWJWQXPBLCDY
129910
+ KYQUUAKYOUUHXHUUMUUNUUOUVBUVCUVDUVEUVFWKYFUUBUUDUUGUSUIUUAUVOXQUUAWLZXRUU
129911
+ BYAUUDYEUUGXQUUANWMUVPXTUUCJXQUUAXJXSWNWOUVPYDUUFKNUVPYCUUEXQUUAYBWPWRWSW
129912
+ TWJXAYGNXKXSPZJQXNXJJKUIXBUVQXMJENXKXSXLWIXCXDXEXF $.
129913
+ $}
129914
+
129747
129915
129748
129916
$(
129749
129917
###############################################################################
0 commit comments