Skip to content

Commit 089644c

Browse files
committed
Add ctiunct to iset.mm
This states that the union of countably many countable sets is countable (subject to a caveat described in the comment). Includes lemmas ctiunctlemf , ctiunctlemfo , ctiunctlemu1st , ctiunctlemu2nd , ctiunctlemuom , and ctiunctlemudc
1 parent 39713f3 commit 089644c

File tree

1 file changed

+168
-0
lines changed

1 file changed

+168
-0
lines changed

iset.mm

Lines changed: 168 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -129744,6 +129744,174 @@ then the Limited Principle of Omniscience (LPO) implies excluded middle.
129744129744
JOABECWKWM $.
129745129745
$}
129746129746

129747+
${
129748+
ctiunct.som $e |- ( ph -> S C_ _om ) $.
129749+
ctiunct.sdc $e |- ( ph -> A. n e. _om DECID n e. S ) $.
129750+
ctiunct.f $e |- ( ph -> F : S -onto-> A ) $.
129751+
ctiunct.tom $e |- ( ( ph /\ x e. A ) -> T C_ _om ) $.
129752+
ctiunct.tdc $e |- ( ( ph /\ x e. A ) -> A. n e. _om DECID n e. T ) $.
129753+
ctiunct.g $e |- ( ( ph /\ x e. A ) -> G : T -onto-> B ) $.
129754+
ctiunct.j $e |- ( ph -> J : _om -1-1-onto-> ( _om X. _om ) ) $.
129755+
ctiunct.u $e |- U = { z e. _om | ( ( 1st ` ( J ` z ) ) e. S
129756+
/\ ( 2nd ` ( J ` z ) ) e. [_ ( F ` ( 1st ` ( J ` z ) ) ) / x ]_ T ) } $.
129757+
129758+
${
129759+
$d F z $. $d J z $. $d N z $. $d S z $. $d T z $. $d x z $.
129760+
ctiunctlem.n $e |- ( ph -> N e. U ) $.
129761+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129762+
ctiunctlemu1st $p |- ( ph -> ( 1st ` ( J ` N ) ) e. S ) $=
129763+
( cfv c1st wcel c2nd csb com wa cv 2fveq3 eleq1d fveq2d csbeq1d eleq12d
129764+
wceq anbi12d elrab2 sylib simprd simpld ) AMLUCZUDUCZFUEZVBUFUCZBVCJUCZ
129765+
GUGZUEZAMUHUEZVDVHUIZAMHUEVIVJUIUBCUJZLUCZUDUCZFUEZVLUFUCZBVMJUCZGUGZUE
129766+
ZUIVJCMUHHVKMUPZVNVDVRVHVSVMVCFVKMUDLUKZULVSVOVEVQVGVKMUFLUKVSBVPVFGVSV
129767+
MVCJVTUMUNUOUQUAURUSUTVA $.
129768+
129769+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129770+
ctiunctlemu2nd $p |- ( ph -> ( 2nd ` ( J ` N ) )
129771+
e. [_ ( F ` ( 1st ` ( J ` N ) ) ) / x ]_ T ) $=
129772+
( cfv c1st wcel c2nd csb com wa cv 2fveq3 eleq1d fveq2d csbeq1d eleq12d
129773+
wceq anbi12d elrab2 sylib simprd ) AMLUCZUDUCZFUEZVAUFUCZBVBJUCZGUGZUEZ
129774+
AMUHUEZVCVGUIZAMHUEVHVIUIUBCUJZLUCZUDUCZFUEZVKUFUCZBVLJUCZGUGZUEZUIVICM
129775+
UHHVJMUPZVMVCVQVGVRVLVBFVJMUDLUKZULVRVNVDVPVFVJMUFLUKVRBVOVEGVRVLVBJVSU
129776+
MUNUOUQUAURUSUTUT $.
129777+
$}
129778+
129779+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129780+
ctiunctlemuom $p |- ( ph -> U C_ _om ) $=
129781+
( com wss cv cfv c1st wcel c2nd csb wa crab ssrab2 eqsstri a1i ) HUAUBAHC
129782+
UCLUDZUEUDZFUFUNUGUDBUOJUDGUHUFUIZCUAUJUATUPCUAUKULUM $.
129783+
129784+
${
129785+
$d A x $. $d F n x $. $d F x z $. $d J n x $. $d J x z $. $d S n $.
129786+
$d S z $. $d T n $. $d T z $. $d U m n $. $d m ph x $. $d m x z $.
129787+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129788+
ctiunctlemudc $p |- ( ph -> A. n e. _om DECID n e. U ) $=
129789+
( vm cv wcel wdc com wral wa cfv c1st c2nd csb wn wceq eleq1 adantr cxp
129790+
dcbid wf1o f1of syl simpr ffvelrnd xp1st rspcdva wfo ad2antrr ralrimiva
129791+
wf fof nfcv nfcsb1v nfcri nfdc nfralya csbeq1a eleq2d ralbidv rspc sylc
129792+
xp2nd dcan wo intnanrd olcd df-dc sylibr exmiddc mpjaodan adantl 2fveq3
129793+
wb eleq1d fveq2d csbeq1d eleq12d anbi12d elrab2 syl6rbbr mpbird cbvralv
129794+
ibar sylib ) AUAUBZHUCZUDZUAUEUFIUBZHUCZUDZIUEUFAXEUAUEAXCUEUCZUGZXEXCL
129795+
UHZUIUHZFUCZXKUJUHZBXLJUHZGUKZUCZUGZUDZXJXMXSXMULZXJXMUGZXMUDZXQUDZXSXJ
129796+
YBXMXJXFFUCZUDZYBIUEXLXFXLUMYDXMXFXLFUNUQAYEIUEUFXINUOXJXKUEUEUPZUCZXLU
129797+
EUCXJUEYFXCLXJUEYFLURZUEYFLVHAYHXISUOUEYFLUSUTAXIVAVBZXKUEUEVCUTVDZUOYA
129798+
XFXPUCZUDZYCIUEXNXFXNUMYKXQXFXNXPUNUQYAXODUCXFGUCZUDZIUEUFZBDUFZYLIUEUF
129799+
ZYAFDXLJAFDJVHZXIXMAFDJVEYROFDJVIUTVFXJXMVAVBAYPXIXMAYOBDQVGVFYOYQBXODY
129800+
LBIUEBUEVJYKBBIXPBXOGVKVLVMVNBUBXOUMZYNYLIUEYSYMYKYSGXPXFBXOGVOVPUQVQVR
129801+
VSYAYGXNUEUCXJYGXMYIUOXKUEUEVTUTVDXMXQWAVSXJXTUGZXRXRULZWBXSYTUUAXRYTXM
129802+
XQXJXTVAWCWDXRWEWFXJYBXMXTWBYJXMWGUTWHXJXDXRXJXRXIXRUGZXDXIXRUUBWKAXIXR
129803+
XAWICUBZLUHZUIUHZFUCZUUDUJUHZBUUEJUHZGUKZUCZUGXRCXCUEHUUCXCUMZUUFXMUUJX
129804+
QUUKUUEXLFUUCXCUILWJZWLUUKUUGXNUUIXPUUCXCUJLWJUUKBUUHXOGUUKUUEXLJUULWMW
129805+
NWOWPTWQWRUQWSVGXEXHUAIUEXCXFUMXDXGXCXFHUNUQWTXB $.
129806+
$}
129807+
129808+
ctiunct.h $e |- H = ( n e. U |-> ( [_ ( F ` ( 1st ` ( J ` n ) ) ) / x ]_ G
129809+
` ( 2nd ` ( J ` n ) ) ) ) $.
129810+
129811+
${
129812+
$d A n x y $. $d B n y $. $d F x y $. $d F z $. $d G y $.
129813+
$d J x y $. $d J z $. $d S z $. $d T z $. $d U n $. $d n ph x $.
129814+
$d x n z $.
129815+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129816+
ctiunctlemf $p |- ( ph -> H : U --> U_ x e. A B ) $=
129817+
( vy cv cfv c2nd c1st csb ciun wcel wrex wfo adantr fof syl com wss wdc
129818+
wa wral adantlr cxp wf1o simpr ctiunctlemu1st ffvelrnd ralrimiva rspsbc
129819+
wf wsbc sylc wb sbcfg mpbid ctiunctlemu2nd csbeq1 eleq2d rspcev syl2anc
129820+
wceq eliun sylibr nfcv nfcsb1v csbeq1a cbviun syl6eleqr fmptd ) AIHIUDZ
129821+
MUEZUFUEZBWJUGUEZJUEZKUHZUEZBDEUIZLAWIHUJZUSZWOUCDBUCUDZEUHZUIZWPWRWOWT
129822+
UJZUCDUKZWOXAUJWRWMDUJZWOBWMEUHZUJZXCWRFDWLJWRFDJULZFDJVIAXGWQPUMZFDJUN
129823+
UOWRBCDEFGHIJKMWIAFUPUQWQNUMZAWIFUJURIUPUTWQOUMZXHABUDDUJZGUPUQWQQVAZAX
129824+
KWIGUJURIUPUTWQRVAZAXKGEKULZWQSVAZAUPUPUPVBMVCWQTUMZUAAWQVDZVEVFZWRBWMG
129825+
UHZXEWKWNWRGEKVIZBWMVJZXSXEWNVIZWRXDXTBDUTZYAXRAYCWQAXTBDAXKUSXNXTSGEKU
129826+
NUOVGUMXTBWMDVHVKWRXDYAYBVLXRBGEKDWMVMUOVNWRBCDEFGHIJKMWIXIXJXHXLXMXOXP
129827+
UAXQVOVFXBXFUCWMDWSWMVTWTXEWOBWSWMEVPVQVRVSUCWODWTWAWBBUCDEWTUCEWCBWSEW
129828+
DBWSEWEWFWGUBWH $.
129829+
$}
129830+
129831+
${
129832+
$d A n r w x $. $d A r u v w x $. $d B n r w $. $d B r u v w $.
129833+
$d F n r x $. $d F r x z $. $d G n r w $. $d H r u v w $. $d J n x $.
129834+
$d J v x $. $d J x z $. $d S r z $. $d T r w z $. $d U n r w $.
129835+
$d U r u v w $. $d n ph r w x $. $d ph r u w x $. $d n z $.
129836+
ctiunct.nfh $e |- F/_ x H $.
129837+
ctiunct.nfu $e |- F/_ x U $.
129838+
$( Lemma for ~ ctiunct . (Contributed by Jim Kingdon, 28-Oct-2023.) $)
129839+
ctiunctlemfo $p |- ( ph -> H : U -onto-> U_ x e. A B ) $=
129840+
( vu vv vw vr ciun wf cv cfv wceq wrex wral wfo ctiunctlemf wcel wa nfv
129841+
nfiu1 nfcri nfan nfcv nffv nfeq2 nfrexxy simplll simplr foelrn sylancom
129842+
syl2anc ad4antr simpllr cop ccnv com c1st c2nd csb cxp wf1o f1ocnv f1of
129843+
syl ad5antr wss simprl sseldd simp-5l adantr simplrl ffvelrnd f1ocnvfv2
129844+
opelxpd fveq2d op1st syl6eq eqeltrd op2nd simprr eqtr4d csbeq1d 3eltr4d
129845+
vex csbid 2fveq3 eleq1d eleq12d anbi12d elrab2 sylanbrc fveq12d simplrr
129846+
jca eqeltrrd fvmptd3 3eqtr4rd fveq2 rspceeqv rexlimddv biimpi r19.29af2
129847+
eliun adantl ralrimiva dffo3 ) AHBDEUIZLUJUEUKZUFUKZLULZUMZUFHUNZUEYHUO
129848+
HYHLUPABCDEFGHIJKLMNOPQRSTUAUBUQAYMUEYHAYIYHURZUSZYIEURZYMBDAYNBABUTBUE
129849+
YHBDEVAVBVCYLBUFHUDBYIYKBYJLUCBYJVDVEVFVGYOBUKZDURZUSZYPUSZYIUGUKZKULZU
129850+
MZYMUGGYSYPGEKUPZUUCUGGUNYTAYRUUDAYNYRYPVHYOYRYPVISVLUGGEYIKVJVKYTUUAGU
129851+
RZUUCUSZUSZYQUHUKZJULZUMZYMUHFUUGFDJUPZYRUUJUHFUNAUUKYNYRYPUUFPVMYOYRYP
129852+
UUFVNZUHFDYQJVJVLUUGUUHFURZUUJUSZUSZUUHUUAVOZMVPZULZHURZYIUURLULZUMYMUU
129853+
OUURVQURUURMULZVRULZFURZUVAVSULZBUVBJULZGVTZURZUSZUUSUUOVQVQWAZVQUUPUUQ
129854+
AUVIVQUUQUJZYNYRYPUUFUUNAUVIVQUUQWBZUVJAVQUVIMWBZUVKTVQUVIMWCWEUVIVQUUQ
129855+
WDWEWFUUOUUHUUAVQVQUUOFVQUUHAFVQWGYNYRYPUUFUUNNWFUUGUUMUUJWHZWIUUOGVQUU
129856+
AUUOAYRGVQWGAYNYRYPUUFUUNWJZUUGYRUUNUULWKQVLYTUUEUUCUUNWLZWIWOZWMUUOUVC
129857+
UVGUUOUVBUUHFUUOUVBUUPVRULUUHUUOUVAUUPVRUUOUVLUUPUVIURUVAUUPUMUUOAUVLUV
129858+
NTWEUVPVQUVIUUPMWNVLZWPUUHUUAUHXEZUGXEZWQWRZUVMWSUUOUUAGUVDUVFUVOUUOUVD
129859+
UUPVSULUUAUUOUVAUUPVSUVQWPUUHUUAUVRUVSWTWRZUUOUVFBYQGVTGUUOBUVEYQGUUOUV
129860+
EUUIYQUUOUVBUUHJUVTWPUUGUUMUUJXAXBZXCBGXFWRXDXOCUKZMULZVRULZFURZUWDVSUL
129861+
ZBUWEJULZGVTZURZUSUVHCUURVQHUWCUURUMZUWFUVCUWJUVGUWKUWEUVBFUWCUURVRMXGZ
129862+
XHUWKUWGUVDUWIUVFUWCUURVSMXGUWKBUWHUVEGUWKUWEUVBJUWLWPXCXIXJUAXKXLZUUOU
129863+
VDBUVEKVTZULZUUBUUTYIUUOUVDUUAUWNKUUOUWNBYQKVTKUUOBUVEYQKUWBXCBKXFWRUWA
129864+
XMZUUOIUURIUKZMULZVSULZBUWRVRULZJULZKVTZULUWOHLEUBUWQUURUMZUWSUVDUXBUWN
129865+
UXCBUXAUVEKUXCUWTUVBJUWQUURVRMXGWPXCUWQUURVSMXGXMUWMUUOYIUWOEUUOYIUUBUW
129866+
OYTUUEUUCUUNXNZUWPXBYSYPUUFUUNVNXPXQUXDXRUFUURHYKUUTYIYJUURLXSXTVLYAYAY
129867+
NYPBDUNZAYNUXEBYIDEYDYBYEYCYFUFUEHYHLYGXL $.
129868+
$}
129869+
$}
129870+
129871+
${
129872+
$d A h j k x $. $d A j k n u x z $. $d A k n u w x z $. $d B h j k $.
129873+
$d B j k n u z $. $d B k n u w z $. $d F k n u w x z $.
129874+
$d G k n u w z $. $d j n ph x $.
129875+
ctiunct.a $e |- ( ph -> F : _om -onto-> ( A |_| 1o ) ) $.
129876+
ctiunct.b $e |- ( ( ph /\ x e. A )
129877+
-> G : _om -onto-> ( B |_| 1o ) ) $.
129878+
$( The union of countably many countable sets is countable. The
129879+
construction here is constructive in the sense that the hypothesis
129880+
provides a specific class for ` G ` in terms of ` x ` , as opposed to a
129881+
construction of the form ` A. x e. A E. g ` . Countable choice would be
129882+
needed to turn the latter into the former.
129883+
129884+
The proof proceeds by mapping a natural number to a pair of natural
129885+
numbers (by ~ xpomen ) and using the first number to map to an element
129886+
` x ` of ` A ` and the second number to map to an element of B(x) . In
129887+
this way we are able to map to every element of ` U_ x e. A B ` .
129888+
Although it would be possible to work directly with countability
129889+
expressed as ` F : _om -onto-> ( A |_| 1o ) ` , we instead use functions
129890+
from subsets of the natural numbers via ~ ctssdccl and ~ ctssdc .
129891+
129892+
(Contributed by Jim Kingdon, 31-Oct-2023.) $)
129893+
ctiunct $p |- ( ph -> E. h h : _om -onto-> ( U_ x e. A B |_| 1o ) ) $=
129894+
( vk vn vz vw com cv wfo wex wcel cfv eqid cxp wf1o ciun c1o cdju cen wbr
129895+
vj vu xpomen ensymi bren mpbi a1i wa wss wdc wral w3a c1st cinl cima crab
129896+
c2nd ccnv ccom ctssdccl simp1d adantr simp3d simp2d adantlr ctiunctlemuom
129897+
csb simpr cmpt nfv nfcsb1v nfel2 nfan nfcv nfrabxy nffv ctiunctlemfo omex
129898+
nfmpt rabex mptex foeq1 spcev ctiunctlemudc wceq sseq1 foeq2 exbidv eleq2
129899+
syl dcbid ralbidv 3anbi123d syl3anc ctssdc cbvexv bitri sylib exlimddv )
129900+
ANNNUAZUHOZUBZNBCDUCZUDUEZEOZPZEQZUHXIUHQZANXGUFUGXOXGNUJUKNXGUHULUMUNAXI
129901+
UOZUIOZNUPZXQXJJOZPZJQZKOZXQRZUQZKNURZUSZUIQZXNXPLOXHSZUTSZMOZFSVACVBRMNV
129902+
CZRZYHVDSZBYIVAVEZFVFZSZYJGSVADVBRMNVCZVNZRZUOZLNVCZNUPZUUAXJXSPZJQZYBUUA
129903+
RZUQZKNURZYGXPBLCDYKYQUUAKYOYNGVFZXHAYKNUPZXIAUUIYKCYOPZYBYKRUQKNURZAMCYK
129904+
KFYOHYKTYOTVGZVHVIZAUUKXIAUUIUUJUUKUULVJVIZAUUJXIAUUIUUJUUKUULVKVIZABOCRZ
129905+
YQNUPZXIAUUPUOZUUQYQDUUHPZYBYQRUQKNURZUURMDYQKGUUHIYQTUUHTVGZVHVLZAUUPUUT
129906+
XIUURUUQUUSUUTUVAVJVLZAUUPUUSXIUURUUQUUSUUTUVAVKVLZAXIVOZUUATZVMXPUUAXJKU
129907+
UAYBXHSZVDSZBUVGUTSYOSZUUHVNZSZVPZPZUUDXPBLCDYKYQUUAKYOUUHUVLXHUUMUUNUUOU
129908+
VBUVCUVDUVEUVFUVLTBKUUAUVKYTBLNYLYSBYLBVQBYMYRBYPYQVRVSVTBNWAWBZBUVHUVJBU
129909+
VIUUHVRBUVHWAWCWFUVNWDUUCUVMJUVLKUUAUVKYTLNWEWGZWHUUAXJXSUVLWIWJWQXPBLCDY
129910+
KYQUUAKYOUUHXHUUMUUNUUOUVBUVCUVDUVEUVFWKYFUUBUUDUUGUSUIUUAUVOXQUUAWLZXRUU
129911+
BYAUUDYEUUGXQUUANWMUVPXTUUCJXQUUAXJXSWNWOUVPYDUUFKNUVPYCUUEXQUUAYBWPWRWSW
129912+
TWJXAYGNXKXSPZJQXNXJJKUIXBUVQXMJENXKXSXLWIXCXDXEXF $.
129913+
$}
129914+
129747129915

129748129916
$(
129749129917
###############################################################################

0 commit comments

Comments
 (0)