Skip to content

Commit 1842620

Browse files
author
icecream17
authored
revise exan + shorten equsb1v (#3263)
* expand hypothesis of exan * shorten equsb1v
1 parent 9125eca commit 1842620

File tree

2 files changed

+97
-66
lines changed

2 files changed

+97
-66
lines changed

discouraged

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15336,6 +15336,7 @@ New usage of "equs5aALT" is discouraged (0 uses).
1533615336
New usage of "equs5eALT" is discouraged (0 uses).
1533715337
New usage of "equsalhwOLD" is discouraged (0 uses).
1533815338
New usage of "equsb1vOLD" is discouraged (0 uses).
15339+
New usage of "equsb1vOLDOLD" is discouraged (0 uses).
1533915340
New usage of "equsb3ALT" is discouraged (0 uses).
1534015341
New usage of "equsb3vOLD" is discouraged (0 uses).
1534115342
New usage of "equsexALT" is discouraged (0 uses).
@@ -15399,6 +15400,7 @@ New usage of "ex-natded9.20-2" is discouraged (0 uses).
1539915400
New usage of "ex-natded9.26" is discouraged (0 uses).
1540015401
New usage of "ex-natded9.26-2" is discouraged (0 uses).
1540115402
New usage of "exanOLD" is discouraged (0 uses).
15403+
New usage of "exanOLDOLD" is discouraged (0 uses).
1540215404
New usage of "exatleN" is discouraged (1 uses).
1540315405
New usage of "exbirVD" is discouraged (0 uses).
1540415406
New usage of "exbiriVD" is discouraged (0 uses).
@@ -18932,7 +18934,8 @@ Proof modification of "equncomiVD" is discouraged (19 steps).
1893218934
Proof modification of "equs5aALT" is discouraged (25 steps).
1893318935
Proof modification of "equs5eALT" is discouraged (39 steps).
1893418936
Proof modification of "equsalhwOLD" is discouraged (39 steps).
18935-
Proof modification of "equsb1vOLD" is discouraged (17 steps).
18937+
Proof modification of "equsb1vOLD" is discouraged (32 steps).
18938+
Proof modification of "equsb1vOLDOLD" is discouraged (17 steps).
1893618939
Proof modification of "equsb3ALT" is discouraged (44 steps).
1893718940
Proof modification of "equsb3vOLD" is discouraged (16 steps).
1893818941
Proof modification of "equsexALT" is discouraged (37 steps).
@@ -18978,7 +18981,8 @@ Proof modification of "ex-natded9.20" is discouraged (58 steps).
1897818981
Proof modification of "ex-natded9.20-2" is discouraged (44 steps).
1897918982
Proof modification of "ex-natded9.26" is discouraged (65 steps).
1898018983
Proof modification of "ex-natded9.26-2" is discouraged (22 steps).
18981-
Proof modification of "exanOLD" is discouraged (29 steps).
18984+
Proof modification of "exanOLD" is discouraged (19 steps).
18985+
Proof modification of "exanOLDOLD" is discouraged (29 steps).
1898218986
Proof modification of "exbirVD" is discouraged (65 steps).
1898318987
Proof modification of "exbiriVD" is discouraged (70 steps).
1898418988
Proof modification of "exinst" is discouraged (12 steps).

set.mm

Lines changed: 91 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -15328,13 +15328,27 @@ only postulated (that is, axiomatic) rule of inference of predicate
1532815328
( wa ancom exbii ) ABDBADCABEF $.
1532915329

1533015330
${
15331-
exan.1 $e |- ( E. x ph /\ ps ) $.
15331+
exan.1 $e |- E. x ph $.
15332+
exan.2 $e |- ps $.
1533215333
$( Place a conjunct in the scope of an existential quantifier.
1533315334
(Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon,
1533415335
25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce
1533515336
axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by
15336-
Wolf Lammen, 6-Nov-2022.) $)
15337+
Wolf Lammen, 6-Nov-2022.) Expand hypothesis. (Revised by Steven
15338+
Nguyen, 19-Jun-2023.) $)
1533715339
exan $p |- E. x ( ph /\ ps ) $=
15340+
( wa jctr eximii ) AABFCDABEGH $.
15341+
$}
15342+
15343+
${
15344+
exanOLD.1 $e |- ( E. x ph /\ ps ) $.
15345+
$( Obsolete proof of ~ exan as of 19-Jun-2023. (Contributed by NM,
15346+
18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof
15347+
shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies.
15348+
(Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen,
15349+
6-Nov-2022.) (Proof modification is discouraged.)
15350+
(New usage is discouraged.) $)
15351+
exanOLD $p |- E. x ( ph /\ ps ) $=
1533815352
( wa wex simpli simpri jctr eximii ) AABECACFZBDGABKBDHIJ $.
1533915353

1534015354
$( Obsolete proof of ~ exan as of 6-Nov-2022. (Contributed by NM,
@@ -15343,7 +15357,7 @@ only postulated (that is, axiomatic) rule of inference of predicate
1534315357
(Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen,
1534415358
8-Oct-2021.) (Proof modification is discouraged.)
1534515359
(New usage is discouraged.) $)
15346-
exanOLD $p |- E. x ( ph /\ ps ) $=
15360+
exanOLDOLD $p |- E. x ( ph /\ ps ) $=
1534715361
( wex wa simpli wi simpri pm3.21 ax-mp eximi ) ACEZABFZCEMBDGANCBANHMBDIB
1534815362
AJKLK $.
1534915363
$}
@@ -16682,27 +16696,40 @@ modal logic (the other standard formulation being ~ extru ). Note: This
1668216696
( weq wi wal wex ax6ev exim mpi exlimiv ) BCDZAEBFZABGZCMLBGNBCHLABIJK $.
1668316697
$}
1668416698

16699+
${
16700+
$d x y $.
16701+
sbtv.1 $e |- ph $.
16702+
$( A substitution into a theorem yields a theorem. See ~ sbt when ` x ` ,
16703+
` y ` need not be disjoint. (Contributed by Steven Nguyen,
16704+
25-Apr-2023.) $)
16705+
sbtv $p |- [ x / y ] ph $=
16706+
( wsb weq wi wa wex a1i ax6ev exan df-sb mpbir2an ) ACBECBFZAGOAHCIAODJOA
16707+
CCBKDLACBMN $.
16708+
$}
16709+
1668516710
${
1668616711
$d x y $.
1668716712
$( Version of ~ equsb1 with a disjoint variable condition, which neither
1668816713
requires ~ ax-12 nor ~ ax-13 . (Contributed by BJ, 11-Sep-2019.)
1668916714
Remove dependencies on axioms. (Revised by Wolf Lammen, 30-May-2023.)
16690-
(Proof shortened by Steven Nguyen, 31-May-2023.) $)
16715+
(Proof shortened by Steven Nguyen, 19-Jun-2023.) $)
1669116716
equsb1v $p |- [ y / x ] x = y $=
16692-
( weq wsb wi wa wex id ax6ev ancli eximii df-sb mpbir2an ) ABCZABDNNENNFZ
16693-
AGNHZNOAABINNPJKNABLM $.
16717+
( weq wsb wi id sbtv sbequ8 mpbir ) ABCZABDJJEZABDKBAJFGJABHI $.
1669416718
$( $j usage 'equsb1v' avoids 'ax-12' 'ax-13'; $)
1669516719
$}
1669616720

1669716721
${
1669816722
$d x y $.
16699-
sbtv.1 $e |- ph $.
16700-
$( A substitution into a theorem yields a theorem. See ~ sbt when ` x ` ,
16701-
` y ` need not be disjoint. (Contributed by Steven Nguyen,
16702-
25-Apr-2023.) $)
16703-
sbtv $p |- [ x / y ] ph $=
16704-
( wsb weq wi wa wex a1i ax6ev pm3.2i exan df-sb mpbir2an ) ACBECBFZAGPAHC
16705-
IAPDJPACPCIACBKDLMACBNO $.
16723+
$( Obsolete version of ~ equsb1v as of 19-Jun-2023. Version of ~ equsb1
16724+
with a disjoint variable condition, which neither requires ~ ax-12 nor
16725+
~ ax-13 . (Contributed by BJ, 11-Sep-2019.) Remove dependencies on
16726+
axioms. (Revised by Wolf Lammen, 30-May-2023.) (Proof shortened by
16727+
Steven Nguyen, 31-May-2023.) (New usage is discouraged.)
16728+
(Proof modification is discouraged.) $)
16729+
equsb1vOLD $p |- [ y / x ] x = y $=
16730+
( weq wsb wi wa wex id ax6ev ancli eximii df-sb mpbir2an ) ABCZABDNNENNFZ
16731+
AGNHZNOAABINNPJKNABLM $.
16732+
$( $j usage 'equsb1vOLD' avoids 'ax-12' 'ax-13'; $)
1670616733
$}
1670716734

1670816735
${
@@ -18837,7 +18864,7 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
1883718864
$( Obsolete version of ~ equsb1v as of 30-May-2023. (Contributed by BJ,
1883818865
11-Sep-2019.) (Proof modification is discouraged.)
1883918866
(New usage is discouraged.) $)
18840-
equsb1vOLD $p |- [ y / x ] x = y $=
18867+
equsb1vOLDOLD $p |- [ y / x ] x = y $=
1884118868
( weq wi wsb sb2v id mpg ) ABCZIDIABEAIABFIGH $.
1884218869
$}
1884318870

@@ -45499,9 +45526,9 @@ conditioning it (with ` x e. z ` ) so that it asserts the existence of a
4549945526
p. 463. (Contributed by NM, 21-Jun-1993.) $)
4550045527
bm1.3ii $p |- E. x A. y ( y e. x <-> ph ) $=
4550145528
( vz wel wi wal wa wb wex 19.42v bimsc1 eximi sylbir elequ2 imbi2d albidv
45502-
alanimi weq cbvexvw mpbi ax-sep pm3.2i exan exlimiiv ) ACEFZGZCHZCBFZUGAI
45503-
JZCHZBKZIZUJAJZCHZBKZEUNUIULIZBKUQUIULBLURUPBUHUKUOCAUGUJMSNOUIUMEUIEKZUM
45504-
AUJGZCHZBKUSDVAUIBEBETZUTUHCVBUJUGABECPQRUAUBACBEUCUDUEUF $.
45529+
alanimi weq cbvexvw mpbi ax-sep exan exlimiiv ) ACEFZGZCHZCBFZUFAIJZCHZBK
45530+
ZIZUIAJZCHZBKZEUMUHUKIZBKUPUHUKBLUQUOBUGUJUNCAUFUIMSNOUHULEAUIGZCHZBKUHEK
45531+
DUSUHBEBETZURUGCUTUIUFABECPQRUAUBACBEUCUDUE $.
4550545532
$}
4550645533

4550745534
${
@@ -549385,10 +549412,10 @@ A collection of theorems for commuting equalities (or
549385549412
condition in the consequent. (Contributed by Giovanni Mascellani,
549386549413
20-Aug-2018.) $)
549387549414
ac6s6f $p |- E. f A. x e. A ( E. y ph -> ps ) $=
549388-
( vz cv wceq wex wi wral wa isseti vex ac6s6 pm3.2i exdistr raleqf biimpa
549389-
exan mpbir nfcv 2eximi ax5e mp2b ) KLZEMZADNBOZCUKPZQZFNKNZUMCEPZFNZKNURU
549390-
PULUNFNZQKNULUSKULKNUSKEGRABCDUKFHKSITUAUEULUNKFUBUFUOUQKFULUNUQUMCUKECUK
549391-
UGJUCUDUHURKUIUJ $.
549415+
( vz cv wceq wex wi wral wa isseti vex ac6s6 exdistr raleqf biimpa 2eximi
549416+
exan mpbir nfcv ax5e mp2b ) KLZEMZADNBOZCUJPZQZFNKNZULCEPZFNZKNUQUOUKUMFN
549417+
ZQKNUKURKKEGRABCDUJFHKSITUEUKUMKFUAUFUNUPKFUKUMUPULCUJECUJUGJUBUCUDUQKUHU
549418+
I $.
549392549419
$}
549393549420

549394549421
$( (End of Giovanni Mascellani's mathbox.) $)
@@ -652118,49 +652145,49 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5
652118652145
fnchoice $p |- ( A e. Fin -> E. f ( f Fn A /\ A. x e. A ( x =/= (/) ->
652119652146
( f ` x ) e. x ) ) ) $=
652120652147
( vw cv wfn c0 wcel wral wa wex wceq anbi12d cvv a1i simplr adantr jca ex
652121-
syl vy vz vg vu wne cfv wi csn cun fneq2 raleq exbidv fn0 mpbir 0ex fneq1
652122-
eqid spcev ax-mp ral0 pm3.2i exan cfn wn cop wf dffn2 biimpi ad2antrl vex
652123-
simpllr fsnunf syl121anc sylibr simprr nfv nfra1 nfan simpr nelne2 necomd
652124-
fvunsn neeq1 fveq2 eleq1d bitrd imbi12d cbvralv rspcv syl5bir eqeltrd w3a
652125-
syl3c simp-4l elsni 3ad2ant2 simp1 eqtrd simp3 pm2.21ddne syl3anc wo elun
652126-
eleq2w sylib mpjaodan ralrimi eximdv snex unex fveq1 imbi2d ralbidv eximi
652127-
syl21anc syl6 ax5e imp an32s cbvexvw exdistrv simprrl simprrr simplrl cdm
652128-
neq0 simpl neleqtrrd fsnunfv 3eltr4d 2eximdv exlimiv pm2.61dan findcard2s
652129-
fndm ) CEZDEZFZAEZGUEZYSYPUFZYSHZUGZAYQIZJZCKYPGFZUUCAGIZJZCKYPUAEZFZUUCA
652130-
UUIIZJZCKZYPUUIUBEZUHZUIZFZUUCAUUPIZJZCKZYPBFZUUCABIZJZCKDUAUBBYQGLZUUEUU
652131-
HCUVDYRUUFUUDUUGYQGYPUJUUCAYQGUKMULYQUUILZUUEUULCUVEYRUUJUUDUUKYQUUIYPUJU
652132-
UCAYQUUIUKMULYQUUPLZUUEUUSCUVFYRUUQUUDUURYQUUPYPUJUUCAYQUUPUKMULYQBLZUUEU
652133-
VCCUVGYRUVAUUDUVBYQBYPUJUUCAYQBUKMULUUFUUGCUUFCKZUUGGGFZUVHUVIGGLGUQGUMUN
652134-
UUFUVICGUOGYPGUPURUSUUCAUTVAVBUUIVCHZUUNUUIHVDZJZUUMUUTUVLUUMJZUUNGLZUUTU
652135-
VMUVNJUCEZUUPFZYTYSUVOUFZYSHZUGZAUUPIZJZUCKZUUTUVLUVNUUMUWBUVLUVNJZUUMUWB
652136-
UWCUUMUWBCKZUWBUWCUUMYPUUNYQVEZUHZUIZUUPFZYTYSUWGUFZYSHZUGZAUUPIZJZCKUWDU
652137-
WCUULUWMCUWCUULUWMUWCUULJZUWHUWLUWNUUPNUWGVFZUWHUWNUUINYPVFZUUNNHZUVKYQNH
652138-
ZUWOUUJUWPUWCUUKUUJUWPUUIYPVGZVHVIUWQUWNUBVJZOUVJUVKUVNUULVKZUWRUWNDVJZOU
652139-
UINYPNUUNYQVLZVMUUPUWGVGZVNUWNUVNUVKUUKUWLUVLUVNUULPUXAUWCUUJUUKVOUVNUVKJ
652140-
ZUUKJZUWKAUUPUXEUUKAUXEAVPUUCAUUIVQZVRUXFYSUUPHZUWKUXFUXHJZYTUWJUXIYTJZYS
652141-
UUIHZUWJYSUUOHZUXJUXKJZUWIUUAYSUXMUUNYSUEZUWIUUALZUXMUXKUVKJZUXNUXMUXKUVK
652142-
UXJUXKVSZUXJUVKUXKUXIUVKYTUVNUVKUUKUXHVKQQRUXPYSUUNYSUUNUUIVTWAZTYPUUNYQY
652143-
SWBZTUXMUXKUUKYTUUBUXQUXJUUKUXKUXEUUKUXHYTVKQUXIYTUXKPUUKUDEZGUEZUXTYPUFZ
652144-
UXTHZUGZUDUUIIUXKUUCUYDUUCUDAUUIUXTYSLZUYAYTUYCUUBUXTYSGWCUYEUYCUUAUXTHUU
652145-
BUYEUYBUUAUXTUXTYSYPWDWEUDAUUAXDWFWGZWHUYDUUCUDYSUUIUYFWIWJZWMWKUXJUXLJUV
652146-
NUXLYTUWJUXJUVNUXLUVNUVKUUKUXHYTWNQUXJUXLVSUXIYTUXLPUVNUXLYTWLZUWJYSGUYHY
652147-
SUUNGUXLUVNYSUUNLZYTYSUUNWOZWPUVNUXLYTWQWRUVNUXLYTWSWTXAUXJUXHUXKUXLXBZUX
652148-
FUXHYTPYSUUIUUOXCZXEXFSSXGXORSXHUWMUWBCUWAUWMUCUWGYPUWFCVJUWEXIXJUVOUWGLZ
652149-
UVPUWHUVTUWLUUPUVOUWGUPUYMUVSUWKAUUPUYMUVRUWJYTUYMUVQUWIYSYSUVOUWGXKWEXLX
652150-
MMURZXNXPUWBCXQZXPXRXSUUSUWACUCYPUVOLZUUQUVPUURUVTUUPYPUVOUPUYPUUCUVSAUUP
652151-
UYPUUBUVRYTUYPUUAUVQYSYSYPUVOXKWEXLXMMXTZVNUVMUVNVDZJZUVKYQUUNHZDKZUUMJZJ
652152-
ZUUTUYSUVKVUBUVJUVKUUMUYRVKUYSVUAUUMUYSUYRVUAUVMUYRVSDUUNYFXEUVLUUMUYRPRR
652153-
VUCUWBUUTVUCUWDDKZUWBUVKVUBVUDVUBUYTUULJZCKDKUVKVUDUYTUULDCYAUVKVUEUWBDCU
652154-
VKVUEUWBUVKVUEJZUWMUWBVUFUWHUWLVUFUWOUWHVUFUWPUWQUVKUWRUWOVUFUUJUWPUVKUYT
652155-
UUJUUKYBZUWSXEUWQVUFUWTOUVKVUEYGUWRVUFUXBOUXCVMUXDVNVUFUWKAUUPUVKVUEAUVKA
652156-
VPUYTUULAUYTAVPUUJUUKAUUJAVPUXGVRVRVRVUFUXHUWKVUFUXHJZYTUWJVUHYTJZUXKUWJU
652157-
XLVUIUXKJZUWIUUAYSVUJUXPUXOVUJUXKUVKVUIUXKVSZUVKVUEUXHYTUXKWNRUXPUXNUXOUX
652158-
RUXSTTVUJUXKUUKYTUUBVUKVUIUUKUXKVUHUUKYTVUFUUKUXHUVKUYTUUJUUKYCQQQVUHYTUX
652159-
KPUYGWMWKVUIUXLJZYQUUNUWIYSVUIUYTUXLVUHUYTYTUVKUYTUULUXHYDQQVULUWIUUNUWGU
652160-
FZYQVULUYIUWIVUMLVULUXLUYIVUIUXLVSUYJTZYSUUNUWGWDTVULUWQUWRUUNYPYEZHVDVUM
652161-
YQLUWQVULUWTOUWRVULUXBOVULVUOUUIUUNUVKVUEUXHYTUXLWNVULUUJVUOUUILVUIUUJUXL
652162-
VUHUUJYTVUFUUJUXHVUGQQQUUIYPYOTYHYPNNUUNYQYIXAWRVUNYJVUIUXHUYKVUFUXHYTPUY
652163-
LXEXFSSXGRUYNTSYKWJXRUWDUWBDUYOYLTUYQVNTYMSYN $.
652148+
syl vy vz vg vu wne cfv wi csn cun fneq2 raleq exbidv 0ex fneq1 fn0 mpbir
652149+
eqid ceqsexv2d ral0 exan cfn wn cop wf biimpi ad2antrl vex simpllr fsnunf
652150+
dffn2 syl121anc sylibr simprr nfra1 nfan simpr nelne2 necomd fvunsn neeq1
652151+
nfv fveq2 eleq1d eleq2w bitrd imbi12d cbvralv rspcv syl5bir syl3c eqeltrd
652152+
simp-4l elsni 3ad2ant2 simp1 eqtrd simp3 pm2.21ddne syl3anc wo elun sylib
652153+
w3a mpjaodan ralrimi syl21anc eximdv snex unex fveq1 imbi2d ralbidv spcev
652154+
eximi syl6 ax5e imp an32s cbvexvw exdistrv simprrl simpl simprrr ad5ant12
652155+
neq0 simplrl fndmd neleqtrrd fsnunfv 3eltr4d 2eximdv pm2.61dan findcard2s
652156+
cdm exlimiv ) CEZDEZFZAEZGUEZYSYPUFZYSHZUGZAYQIZJZCKYPGFZUUCAGIZJZCKYPUAE
652157+
ZFZUUCAUUIIZJZCKZYPUUIUBEZUHZUIZFZUUCAUUPIZJZCKZYPBFZUUCABIZJZCKDUAUBBYQG
652158+
LZUUEUUHCUVDYRUUFUUDUUGYQGYPUJUUCAYQGUKMULYQUUILZUUEUULCUVEYRUUJUUDUUKYQU
652159+
UIYPUJUUCAYQUUIUKMULYQUUPLZUUEUUSCUVFYRUUQUUDUURYQUUPYPUJUUCAYQUUPUKMULYQ
652160+
BLZUUEUVCCUVGYRUVAUUDUVBYQBYPUJUUCAYQBUKMULUUFUUGCUUFGGFZCGUMGYPGUNUVHGGL
652161+
GUQGUOUPURUUCAUSUTUUIVAHZUUNUUIHVBZJZUUMUUTUVKUUMJZUUNGLZUUTUVLUVMJUCEZUU
652162+
PFZYTYSUVNUFZYSHZUGZAUUPIZJZUCKZUUTUVKUVMUUMUWAUVKUVMJZUUMUWAUWBUUMUWACKZ
652163+
UWAUWBUUMYPUUNYQVCZUHZUIZUUPFZYTYSUWFUFZYSHZUGZAUUPIZJZCKUWCUWBUULUWLCUWB
652164+
UULUWLUWBUULJZUWGUWKUWMUUPNUWFVDZUWGUWMUUINYPVDZUUNNHZUVJYQNHZUWNUUJUWOUW
652165+
BUUKUUJUWOUUIYPVJZVEVFUWPUWMUBVGZOUVIUVJUVMUULVHZUWQUWMDVGZOUUINYPNUUNYQV
652166+
IZVKUUPUWFVJZVLUWMUVMUVJUUKUWKUVKUVMUULPUWTUWBUUJUUKVMUVMUVJJZUUKJZUWJAUU
652167+
PUXDUUKAUXDAWAUUCAUUIVNZVOUXEYSUUPHZUWJUXEUXGJZYTUWIUXHYTJZYSUUIHZUWIYSUU
652168+
OHZUXIUXJJZUWHUUAYSUXLUUNYSUEZUWHUUALZUXLUXJUVJJZUXMUXLUXJUVJUXIUXJVPZUXI
652169+
UVJUXJUXHUVJYTUVMUVJUUKUXGVHQQRUXOYSUUNYSUUNUUIVQVRZTYPUUNYQYSVSZTUXLUXJU
652170+
UKYTUUBUXPUXIUUKUXJUXDUUKUXGYTVHQUXHYTUXJPUUKUDEZGUEZUXSYPUFZUXSHZUGZUDUU
652171+
IIUXJUUCUYCUUCUDAUUIUXSYSLZUXTYTUYBUUBUXSYSGVTUYDUYBUUAUXSHUUBUYDUYAUUAUX
652172+
SUXSYSYPWBWCUDAUUAWDWEWFZWGUYCUUCUDYSUUIUYEWHWIZWJWKUXIUXKJUVMUXKYTUWIUXI
652173+
UVMUXKUVMUVJUUKUXGYTWLQUXIUXKVPUXHYTUXKPUVMUXKYTXCZUWIYSGUYGYSUUNGUXKUVMY
652174+
SUUNLZYTYSUUNWMZWNUVMUXKYTWOWPUVMUXKYTWQWRWSUXIUXGUXJUXKWTZUXEUXGYTPYSUUI
652175+
UUOXAZXBXDSSXEXFRSXGUWLUWACUVTUWLUCUWFYPUWECVGUWDXHXIUVNUWFLZUVOUWGUVSUWK
652176+
UUPUVNUWFUNUYLUVRUWJAUUPUYLUVQUWIYTUYLUVPUWHYSYSUVNUWFXJWCXKXLMXMZXNXOUWA
652177+
CXPZXOXQXRUUSUVTCUCYPUVNLZUUQUVOUURUVSUUPYPUVNUNUYOUUCUVRAUUPUYOUUBUVQYTU
652178+
YOUUAUVPYSYSYPUVNXJWCXKXLMXSZVLUVLUVMVBZJZUVJYQUUNHZDKZUUMJZJZUUTUYRUVJVU
652179+
AUVIUVJUUMUYQVHUYRUYTUUMUYRUYQUYTUVLUYQVPDUUNYEXBUVKUUMUYQPRRVUBUWAUUTVUB
652180+
UWCDKZUWAUVJVUAVUCVUAUYSUULJZCKDKUVJVUCUYSUULDCXTUVJVUDUWADCUVJVUDUWAUVJV
652181+
UDJZUWLUWAVUEUWGUWKVUEUWNUWGVUEUWOUWPUVJUWQUWNVUEUUJUWOUVJUYSUUJUUKYAZUWR
652182+
XBUWPVUEUWSOUVJVUDYBUWQVUEUXAOUXBVKUXCVLVUEUWJAUUPUVJVUDAUVJAWAUYSUULAUYS
652183+
AWAUUJUUKAUUJAWAUXFVOVOVOVUEUXGUWJVUEUXGJZYTUWIVUGYTJZUXJUWIUXKVUHUXJJZUW
652184+
HUUAYSVUIUXOUXNVUIUXJUVJVUHUXJVPZUVJVUDUXGYTUXJWLRUXOUXMUXNUXQUXRTTVUIUXJ
652185+
UUKYTUUBVUJUVJVUDUUKUXGYTUXJUVJUYSUUJUUKYCYDVUGYTUXJPUYFWJWKVUHUXKJZYQUUN
652186+
UWHYSVUHUYSUXKVUGUYSYTUVJUYSUULUXGYFQQVUKUWHUUNUWFUFZYQVUKUYHUWHVULLVUKUX
652187+
KUYHVUHUXKVPUYITZYSUUNUWFWBTVUKUWPUWQUUNYPYNZHVBVULYQLUWPVUKUWSOUWQVUKUXA
652188+
OVUKVUNUUIUUNUVJVUDUXGYTUXKWLVUKUUIYPUVJVUDUUJUXGYTUXKVUFYDYGYHYPNNUUNYQY
652189+
IWSWPVUMYJVUHUXGUYJVUEUXGYTPUYKXBXDSSXERUYMTSYKWIXQUWCUWADUYNYOTUYPVLTYLS
652190+
YM $.
652164652191
$}
652165652192

652166652193
${

0 commit comments

Comments
 (0)