@@ -15328,13 +15328,27 @@ only postulated (that is, axiomatic) rule of inference of predicate
15328
15328
( wa ancom exbii ) ABDBADCABEF $.
15329
15329
15330
15330
${
15331
- exan.1 $e |- ( E. x ph /\ ps ) $.
15331
+ exan.1 $e |- E. x ph $.
15332
+ exan.2 $e |- ps $.
15332
15333
$( Place a conjunct in the scope of an existential quantifier.
15333
15334
(Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon,
15334
15335
25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce
15335
15336
axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by
15336
- Wolf Lammen, 6-Nov-2022.) $)
15337
+ Wolf Lammen, 6-Nov-2022.) Expand hypothesis. (Revised by Steven
15338
+ Nguyen, 19-Jun-2023.) $)
15337
15339
exan $p |- E. x ( ph /\ ps ) $=
15340
+ ( wa jctr eximii ) AABFCDABEGH $.
15341
+ $}
15342
+
15343
+ ${
15344
+ exanOLD.1 $e |- ( E. x ph /\ ps ) $.
15345
+ $( Obsolete proof of ~ exan as of 19-Jun-2023. (Contributed by NM,
15346
+ 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof
15347
+ shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies.
15348
+ (Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen,
15349
+ 6-Nov-2022.) (Proof modification is discouraged.)
15350
+ (New usage is discouraged.) $)
15351
+ exanOLD $p |- E. x ( ph /\ ps ) $=
15338
15352
( wa wex simpli simpri jctr eximii ) AABECACFZBDGABKBDHIJ $.
15339
15353
15340
15354
$( Obsolete proof of ~ exan as of 6-Nov-2022. (Contributed by NM,
@@ -15343,7 +15357,7 @@ only postulated (that is, axiomatic) rule of inference of predicate
15343
15357
(Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen,
15344
15358
8-Oct-2021.) (Proof modification is discouraged.)
15345
15359
(New usage is discouraged.) $)
15346
- exanOLD $p |- E. x ( ph /\ ps ) $=
15360
+ exanOLDOLD $p |- E. x ( ph /\ ps ) $=
15347
15361
( wex wa simpli wi simpri pm3.21 ax-mp eximi ) ACEZABFZCEMBDGANCBANHMBDIB
15348
15362
AJKLK $.
15349
15363
$}
@@ -16682,27 +16696,40 @@ modal logic (the other standard formulation being ~ extru ). Note: This
16682
16696
( weq wi wal wex ax6ev exim mpi exlimiv ) BCDZAEBFZABGZCMLBGNBCHLABIJK $.
16683
16697
$}
16684
16698
16699
+ ${
16700
+ $d x y $.
16701
+ sbtv.1 $e |- ph $.
16702
+ $( A substitution into a theorem yields a theorem. See ~ sbt when ` x ` ,
16703
+ ` y ` need not be disjoint. (Contributed by Steven Nguyen,
16704
+ 25-Apr-2023.) $)
16705
+ sbtv $p |- [ x / y ] ph $=
16706
+ ( wsb weq wi wa wex a1i ax6ev exan df-sb mpbir2an ) ACBECBFZAGOAHCIAODJOA
16707
+ CCBKDLACBMN $.
16708
+ $}
16709
+
16685
16710
${
16686
16711
$d x y $.
16687
16712
$( Version of ~ equsb1 with a disjoint variable condition, which neither
16688
16713
requires ~ ax-12 nor ~ ax-13 . (Contributed by BJ, 11-Sep-2019.)
16689
16714
Remove dependencies on axioms. (Revised by Wolf Lammen, 30-May-2023.)
16690
- (Proof shortened by Steven Nguyen, 31-May -2023.) $)
16715
+ (Proof shortened by Steven Nguyen, 19-Jun -2023.) $)
16691
16716
equsb1v $p |- [ y / x ] x = y $=
16692
- ( weq wsb wi wa wex id ax6ev ancli eximii df-sb mpbir2an ) ABCZABDNNENNFZ
16693
- AGNHZNOAABINNPJKNABLM $.
16717
+ ( weq wsb wi id sbtv sbequ8 mpbir ) ABCZABDJJEZABDKBAJFGJABHI $.
16694
16718
$( $j usage 'equsb1v' avoids 'ax-12' 'ax-13'; $)
16695
16719
$}
16696
16720
16697
16721
${
16698
16722
$d x y $.
16699
- sbtv.1 $e |- ph $.
16700
- $( A substitution into a theorem yields a theorem. See ~ sbt when ` x ` ,
16701
- ` y ` need not be disjoint. (Contributed by Steven Nguyen,
16702
- 25-Apr-2023.) $)
16703
- sbtv $p |- [ x / y ] ph $=
16704
- ( wsb weq wi wa wex a1i ax6ev pm3.2i exan df-sb mpbir2an ) ACBECBFZAGPAHC
16705
- IAPDJPACPCIACBKDLMACBNO $.
16723
+ $( Obsolete version of ~ equsb1v as of 19-Jun-2023. Version of ~ equsb1
16724
+ with a disjoint variable condition, which neither requires ~ ax-12 nor
16725
+ ~ ax-13 . (Contributed by BJ, 11-Sep-2019.) Remove dependencies on
16726
+ axioms. (Revised by Wolf Lammen, 30-May-2023.) (Proof shortened by
16727
+ Steven Nguyen, 31-May-2023.) (New usage is discouraged.)
16728
+ (Proof modification is discouraged.) $)
16729
+ equsb1vOLD $p |- [ y / x ] x = y $=
16730
+ ( weq wsb wi wa wex id ax6ev ancli eximii df-sb mpbir2an ) ABCZABDNNENNFZ
16731
+ AGNHZNOAABINNPJKNABLM $.
16732
+ $( $j usage 'equsb1vOLD' avoids 'ax-12' 'ax-13'; $)
16706
16733
$}
16707
16734
16708
16735
${
@@ -18837,7 +18864,7 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
18837
18864
$( Obsolete version of ~ equsb1v as of 30-May-2023. (Contributed by BJ,
18838
18865
11-Sep-2019.) (Proof modification is discouraged.)
18839
18866
(New usage is discouraged.) $)
18840
- equsb1vOLD $p |- [ y / x ] x = y $=
18867
+ equsb1vOLDOLD $p |- [ y / x ] x = y $=
18841
18868
( weq wi wsb sb2v id mpg ) ABCZIDIABEAIABFIGH $.
18842
18869
$}
18843
18870
@@ -45499,9 +45526,9 @@ conditioning it (with ` x e. z ` ) so that it asserts the existence of a
45499
45526
p. 463. (Contributed by NM, 21-Jun-1993.) $)
45500
45527
bm1.3ii $p |- E. x A. y ( y e. x <-> ph ) $=
45501
45528
( vz wel wi wal wa wb wex 19.42v bimsc1 eximi sylbir elequ2 imbi2d albidv
45502
- alanimi weq cbvexvw mpbi ax-sep pm3.2i exan exlimiiv ) ACEFZGZCHZCBFZUGAI
45503
- JZCHZBKZIZUJAJZCHZBKZEUNUIULIZBKUQUIULBLURUPBUHUKUOCAUGUJMSNOUIUMEUIEKZUM
45504
- AUJGZCHZBKUSDVAUIBEBETZUTUHCVBUJUGABECPQRUAUBACBEUCUDUEUF $.
45529
+ alanimi weq cbvexvw mpbi ax-sep exan exlimiiv ) ACEFZGZCHZCBFZUFAIJZCHZBK
45530
+ ZIZUIAJZCHZBKZEUMUHUKIZBKUPUHUKBLUQUOBUGUJUNCAUFUIMSNOUHULEAUIGZCHZBKUHEK
45531
+ DUSUHBEBETZURUGCUTUIUFABECPQRUAUBACBEUCUDUE $.
45505
45532
$}
45506
45533
45507
45534
${
@@ -549385,10 +549412,10 @@ A collection of theorems for commuting equalities (or
549385
549412
condition in the consequent. (Contributed by Giovanni Mascellani,
549386
549413
20-Aug-2018.) $)
549387
549414
ac6s6f $p |- E. f A. x e. A ( E. y ph -> ps ) $=
549388
- ( vz cv wceq wex wi wral wa isseti vex ac6s6 pm3.2i exdistr raleqf biimpa
549389
- exan mpbir nfcv 2eximi ax5e mp2b ) KLZEMZADNBOZCUKPZQZFNKNZUMCEPZFNZKNURU
549390
- PULUNFNZQKNULUSKULKNUSKEGRABCDUKFHKSITUAUEULUNKFUBUFUOUQKFULUNUQUMCUKECUK
549391
- UGJUCUDUHURKUIUJ $.
549415
+ ( vz cv wceq wex wi wral wa isseti vex ac6s6 exdistr raleqf biimpa 2eximi
549416
+ exan mpbir nfcv ax5e mp2b ) KLZEMZADNBOZCUJPZQZFNKNZULCEPZFNZKNUQUOUKUMFN
549417
+ ZQKNUKURKKEGRABCDUJFHKSITUEUKUMKFUAUFUNUPKFUKUMUPULCUJECUJUGJUBUCUDUQKUHU
549418
+ I $.
549392
549419
$}
549393
549420
549394
549421
$( (End of Giovanni Mascellani's mathbox.) $)
@@ -652118,49 +652145,49 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5
652118
652145
fnchoice $p |- ( A e. Fin -> E. f ( f Fn A /\ A. x e. A ( x =/= (/) ->
652119
652146
( f ` x ) e. x ) ) ) $=
652120
652147
( vw cv wfn c0 wcel wral wa wex wceq anbi12d cvv a1i simplr adantr jca ex
652121
- syl vy vz vg vu wne cfv wi csn cun fneq2 raleq exbidv fn0 mpbir 0ex fneq1
652122
- eqid spcev ax-mp ral0 pm3.2i exan cfn wn cop wf dffn2 biimpi ad2antrl vex
652123
- simpllr fsnunf syl121anc sylibr simprr nfv nfra1 nfan simpr nelne2 necomd
652124
- fvunsn neeq1 fveq2 eleq1d bitrd imbi12d cbvralv rspcv syl5bir eqeltrd w3a
652125
- syl3c simp-4l elsni 3ad2ant2 simp1 eqtrd simp3 pm2.21ddne syl3anc wo elun
652126
- eleq2w sylib mpjaodan ralrimi eximdv snex unex fveq1 imbi2d ralbidv eximi
652127
- syl21anc syl6 ax5e imp an32s cbvexvw exdistrv simprrl simprrr simplrl cdm
652128
- neq0 simpl neleqtrrd fsnunfv 3eltr4d 2eximdv exlimiv pm2.61dan findcard2s
652129
- fndm ) CEZDEZFZAEZGUEZYSYPUFZYSHZUGZAYQIZJZCKYPGFZUUCAGIZJZCKYPUAEZFZUUCA
652130
- UUIIZJZCKZYPUUIUBEZUHZUIZFZUUCAUUPIZJZCKZYPBFZUUCABIZJZCKDUAUBBYQGLZUUEUU
652131
- HCUVDYRUUFUUDUUGYQGYPUJUUCAYQGUKMULYQUUILZUUEUULCUVEYRUUJUUDUUKYQUUIYPUJU
652132
- UCAYQUUIUKMULYQUUPLZUUEUUSCUVFYRUUQUUDUURYQUUPYPUJUUCAYQUUPUKMULYQBLZUUEU
652133
- VCCUVGYRUVAUUDUVBYQBYPUJUUCAYQBUKMULUUFUUGCUUFCKZUUGGGFZUVHUVIGGLGUQGUMUN
652134
- UUFUVICGUOGYPGUPURUSUUCAUTVAVBUUIVCHZUUNUUIHVDZJZUUMUUTUVLUUMJZUUNGLZUUTU
652135
- VMUVNJUCEZUUPFZYTYSUVOUFZYSHZUGZAUUPIZJZUCKZUUTUVLUVNUUMUWBUVLUVNJZUUMUWB
652136
- UWCUUMUWBCKZUWBUWCUUMYPUUNYQVEZUHZUIZUUPFZYTYSUWGUFZYSHZUGZAUUPIZJZCKUWDU
652137
- WCUULUWMCUWCUULUWMUWCUULJZUWHUWLUWNUUPNUWGVFZUWHUWNUUINYPVFZUUNNHZUVKYQNH
652138
- ZUWOUUJUWPUWCUUKUUJUWPUUIYPVGZVHVIUWQUWNUBVJZOUVJUVKUVNUULVKZUWRUWNDVJZOU
652139
- UINYPNUUNYQVLZVMUUPUWGVGZVNUWNUVNUVKUUKUWLUVLUVNUULPUXAUWCUUJUUKVOUVNUVKJ
652140
- ZUUKJZUWKAUUPUXEUUKAUXEAVPUUCAUUIVQZVRUXFYSUUPHZUWKUXFUXHJZYTUWJUXIYTJZYS
652141
- UUIHZUWJYSUUOHZUXJUXKJZUWIUUAYSUXMUUNYSUEZUWIUUALZUXMUXKUVKJZUXNUXMUXKUVK
652142
- UXJUXKVSZUXJUVKUXKUXIUVKYTUVNUVKUUKUXHVKQQRUXPYSUUNYSUUNUUIVTWAZTYPUUNYQY
652143
- SWBZTUXMUXKUUKYTUUBUXQUXJUUKUXKUXEUUKUXHYTVKQUXIYTUXKPUUKUDEZGUEZUXTYPUFZ
652144
- UXTHZUGZUDUUIIUXKUUCUYDUUCUDAUUIUXTYSLZUYAYTUYCUUBUXTYSGWCUYEUYCUUAUXTHUU
652145
- BUYEUYBUUAUXTUXTYSYPWDWEUDAUUAXDWFWGZWHUYDUUCUDYSUUIUYFWIWJZWMWKUXJUXLJUV
652146
- NUXLYTUWJUXJUVNUXLUVNUVKUUKUXHYTWNQUXJUXLVSUXIYTUXLPUVNUXLYTWLZUWJYSGUYHY
652147
- SUUNGUXLUVNYSUUNLZYTYSUUNWOZWPUVNUXLYTWQWRUVNUXLYTWSWTXAUXJUXHUXKUXLXBZUX
652148
- FUXHYTPYSUUIUUOXCZXEXFSSXGXORSXHUWMUWBCUWAUWMUCUWGYPUWFCVJUWEXIXJUVOUWGLZ
652149
- UVPUWHUVTUWLUUPUVOUWGUPUYMUVSUWKAUUPUYMUVRUWJYTUYMUVQUWIYSYSUVOUWGXKWEXLX
652150
- MMURZXNXPUWBCXQZXPXRXSUUSUWACUCYPUVOLZUUQUVPUURUVTUUPYPUVOUPUYPUUCUVSAUUP
652151
- UYPUUBUVRYTUYPUUAUVQYSYSYPUVOXKWEXLXMMXTZVNUVMUVNVDZJZUVKYQUUNHZDKZUUMJZJ
652152
- ZUUTUYSUVKVUBUVJUVKUUMUYRVKUYSVUAUUMUYSUYRVUAUVMUYRVSDUUNYFXEUVLUUMUYRPRR
652153
- VUCUWBUUTVUCUWDDKZUWBUVKVUBVUDVUBUYTUULJZCKDKUVKVUDUYTUULDCYAUVKVUEUWBDCU
652154
- VKVUEUWBUVKVUEJZUWMUWBVUFUWHUWLVUFUWOUWHVUFUWPUWQUVKUWRUWOVUFUUJUWPUVKUYT
652155
- UUJUUKYBZUWSXEUWQVUFUWTOUVKVUEYGUWRVUFUXBOUXCVMUXDVNVUFUWKAUUPUVKVUEAUVKA
652156
- VPUYTUULAUYTAVPUUJUUKAUUJAVPUXGVRVRVRVUFUXHUWKVUFUXHJZYTUWJVUHYTJZUXKUWJU
652157
- XLVUIUXKJZUWIUUAYSVUJUXPUXOVUJUXKUVKVUIUXKVSZUVKVUEUXHYTUXKWNRUXPUXNUXOUX
652158
- RUXSTTVUJUXKUUKYTUUBVUKVUIUUKUXKVUHUUKYTVUFUUKUXHUVKUYTUUJUUKYCQQQVUHYTUX
652159
- KPUYGWMWKVUIUXLJZYQUUNUWIYSVUIUYTUXLVUHUYTYTUVKUYTUULUXHYDQQVULUWIUUNUWGU
652160
- FZYQVULUYIUWIVUMLVULUXLUYIVUIUXLVSUYJTZYSUUNUWGWDTVULUWQUWRUUNYPYEZHVDVUM
652161
- YQLUWQVULUWTOUWRVULUXBOVULVUOUUIUUNUVKVUEUXHYTUXLWNVULUUJVUOUUILVUIUUJUXL
652162
- VUHUUJYTVUFUUJUXHVUGQQQUUIYPYOTYHYPNNUUNYQYIXAWRVUNYJVUIUXHUYKVUFUXHYTPUY
652163
- LXEXFSSXGRUYNTSYKWJXRUWDUWBDUYOYLTUYQVNTYMSYN $.
652148
+ syl vy vz vg vu wne cfv wi csn cun fneq2 raleq exbidv 0ex fneq1 fn0 mpbir
652149
+ eqid ceqsexv2d ral0 exan cfn wn cop wf biimpi ad2antrl vex simpllr fsnunf
652150
+ dffn2 syl121anc sylibr simprr nfra1 nfan simpr nelne2 necomd fvunsn neeq1
652151
+ nfv fveq2 eleq1d eleq2w bitrd imbi12d cbvralv rspcv syl5bir syl3c eqeltrd
652152
+ simp-4l elsni 3ad2ant2 simp1 eqtrd simp3 pm2.21ddne syl3anc wo elun sylib
652153
+ w3a mpjaodan ralrimi syl21anc eximdv snex unex fveq1 imbi2d ralbidv spcev
652154
+ eximi syl6 ax5e imp an32s cbvexvw exdistrv simprrl simpl simprrr ad5ant12
652155
+ neq0 simplrl fndmd neleqtrrd fsnunfv 3eltr4d 2eximdv pm2.61dan findcard2s
652156
+ cdm exlimiv ) CEZDEZFZAEZGUEZYSYPUFZYSHZUGZAYQIZJZCKYPGFZUUCAGIZJZCKYPUAE
652157
+ ZFZUUCAUUIIZJZCKZYPUUIUBEZUHZUIZFZUUCAUUPIZJZCKZYPBFZUUCABIZJZCKDUAUBBYQG
652158
+ LZUUEUUHCUVDYRUUFUUDUUGYQGYPUJUUCAYQGUKMULYQUUILZUUEUULCUVEYRUUJUUDUUKYQU
652159
+ UIYPUJUUCAYQUUIUKMULYQUUPLZUUEUUSCUVFYRUUQUUDUURYQUUPYPUJUUCAYQUUPUKMULYQ
652160
+ BLZUUEUVCCUVGYRUVAUUDUVBYQBYPUJUUCAYQBUKMULUUFUUGCUUFGGFZCGUMGYPGUNUVHGGL
652161
+ GUQGUOUPURUUCAUSUTUUIVAHZUUNUUIHVBZJZUUMUUTUVKUUMJZUUNGLZUUTUVLUVMJUCEZUU
652162
+ PFZYTYSUVNUFZYSHZUGZAUUPIZJZUCKZUUTUVKUVMUUMUWAUVKUVMJZUUMUWAUWBUUMUWACKZ
652163
+ UWAUWBUUMYPUUNYQVCZUHZUIZUUPFZYTYSUWFUFZYSHZUGZAUUPIZJZCKUWCUWBUULUWLCUWB
652164
+ UULUWLUWBUULJZUWGUWKUWMUUPNUWFVDZUWGUWMUUINYPVDZUUNNHZUVJYQNHZUWNUUJUWOUW
652165
+ BUUKUUJUWOUUIYPVJZVEVFUWPUWMUBVGZOUVIUVJUVMUULVHZUWQUWMDVGZOUUINYPNUUNYQV
652166
+ IZVKUUPUWFVJZVLUWMUVMUVJUUKUWKUVKUVMUULPUWTUWBUUJUUKVMUVMUVJJZUUKJZUWJAUU
652167
+ PUXDUUKAUXDAWAUUCAUUIVNZVOUXEYSUUPHZUWJUXEUXGJZYTUWIUXHYTJZYSUUIHZUWIYSUU
652168
+ OHZUXIUXJJZUWHUUAYSUXLUUNYSUEZUWHUUALZUXLUXJUVJJZUXMUXLUXJUVJUXIUXJVPZUXI
652169
+ UVJUXJUXHUVJYTUVMUVJUUKUXGVHQQRUXOYSUUNYSUUNUUIVQVRZTYPUUNYQYSVSZTUXLUXJU
652170
+ UKYTUUBUXPUXIUUKUXJUXDUUKUXGYTVHQUXHYTUXJPUUKUDEZGUEZUXSYPUFZUXSHZUGZUDUU
652171
+ IIUXJUUCUYCUUCUDAUUIUXSYSLZUXTYTUYBUUBUXSYSGVTUYDUYBUUAUXSHUUBUYDUYAUUAUX
652172
+ SUXSYSYPWBWCUDAUUAWDWEWFZWGUYCUUCUDYSUUIUYEWHWIZWJWKUXIUXKJUVMUXKYTUWIUXI
652173
+ UVMUXKUVMUVJUUKUXGYTWLQUXIUXKVPUXHYTUXKPUVMUXKYTXCZUWIYSGUYGYSUUNGUXKUVMY
652174
+ SUUNLZYTYSUUNWMZWNUVMUXKYTWOWPUVMUXKYTWQWRWSUXIUXGUXJUXKWTZUXEUXGYTPYSUUI
652175
+ UUOXAZXBXDSSXEXFRSXGUWLUWACUVTUWLUCUWFYPUWECVGUWDXHXIUVNUWFLZUVOUWGUVSUWK
652176
+ UUPUVNUWFUNUYLUVRUWJAUUPUYLUVQUWIYTUYLUVPUWHYSYSUVNUWFXJWCXKXLMXMZXNXOUWA
652177
+ CXPZXOXQXRUUSUVTCUCYPUVNLZUUQUVOUURUVSUUPYPUVNUNUYOUUCUVRAUUPUYOUUBUVQYTU
652178
+ YOUUAUVPYSYSYPUVNXJWCXKXLMXSZVLUVLUVMVBZJZUVJYQUUNHZDKZUUMJZJZUUTUYRUVJVU
652179
+ AUVIUVJUUMUYQVHUYRUYTUUMUYRUYQUYTUVLUYQVPDUUNYEXBUVKUUMUYQPRRVUBUWAUUTVUB
652180
+ UWCDKZUWAUVJVUAVUCVUAUYSUULJZCKDKUVJVUCUYSUULDCXTUVJVUDUWADCUVJVUDUWAUVJV
652181
+ UDJZUWLUWAVUEUWGUWKVUEUWNUWGVUEUWOUWPUVJUWQUWNVUEUUJUWOUVJUYSUUJUUKYAZUWR
652182
+ XBUWPVUEUWSOUVJVUDYBUWQVUEUXAOUXBVKUXCVLVUEUWJAUUPUVJVUDAUVJAWAUYSUULAUYS
652183
+ AWAUUJUUKAUUJAWAUXFVOVOVOVUEUXGUWJVUEUXGJZYTUWIVUGYTJZUXJUWIUXKVUHUXJJZUW
652184
+ HUUAYSVUIUXOUXNVUIUXJUVJVUHUXJVPZUVJVUDUXGYTUXJWLRUXOUXMUXNUXQUXRTTVUIUXJ
652185
+ UUKYTUUBVUJUVJVUDUUKUXGYTUXJUVJUYSUUJUUKYCYDVUGYTUXJPUYFWJWKVUHUXKJZYQUUN
652186
+ UWHYSVUHUYSUXKVUGUYSYTUVJUYSUULUXGYFQQVUKUWHUUNUWFUFZYQVUKUYHUWHVULLVUKUX
652187
+ KUYHVUHUXKVPUYITZYSUUNUWFWBTVUKUWPUWQUUNYPYNZHVBVULYQLUWPVUKUWSOUWQVUKUXA
652188
+ OVUKVUNUUIUUNUVJVUDUXGYTUXKWLVUKUUIYPUVJVUDUUJUXGYTUXKVUFYDYGYHYPNNUUNYQY
652189
+ IWSWPVUMYJVUHUXGUYJVUEUXGYTPUYKXBXDSSXERUYMTSYKWIXQUWCUWADUYNYOTUYPVLTYLS
652190
+ YM $.
652164
652191
$}
652165
652192
652166
652193
${
0 commit comments