Skip to content

Commit 1903c66

Browse files
authored
add a few more gsum theorems to iset.mm (#4982)
* copy gsumvallem2 from set.mm to iset.mm * copy gsumsubm from set.mm to iset.mm * Add gsumfzval to iset.mm This is a tidy expression for gsum which should be much easier to deal with than igsumval directly. Also, wrap igsumval in ${ $} without otherwise changing it. * Add gsumfzz to iset.mm This is gsumz from set.mm but where the sum is indexed by consecutive integers. The proof is via gsumfzval and induction. * add gsum/Word theorems to mmil.html This is gsumwsubmcl , gsumws1 , gsumwcl , gsumsgrpccat , gsumccat , gsumws2 , gsumccatsn , gsumspl , gsumwmhm , and gsumwspan * add gsum/support theorems to mmil.html This is gsumval3a , gsumval3eu , gsumval3lem1 , gsumval3lem2 , gsumval3 , gsumcllem , gsumzres , gsumzcl2 , gsumzcl , gsumzf1o , gsumres , and gsumcl2 * Add gsumfzcl to iset.mm This is gsumcl from set.mm except only for the case where the sum is indexed by consecutive integers, not for any finitely supported set. The proof is a new one. * Add gsumf1o to mmil.html
1 parent 83b18d4 commit 1903c66

File tree

2 files changed

+197
-11
lines changed

2 files changed

+197
-11
lines changed

iset.mm

Lines changed: 154 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -147576,16 +147576,54 @@ arbitrary magmas (then it should be called "iterated sum"). If the magma is
147576147576
AXMWQXNUVDUVESSXOXPWNUUKBSXQWMXR $.
147577147577
$}
147578147578

147579-
$d .+ x $. $d .0. x $. $d F m n x $. $d G m n x $. $d m n ph x $.
147580-
gsumval.a $e |- ( ph -> A e. X ) $.
147581-
gsumval.f $e |- ( ph -> F : A --> B ) $.
147582-
$( Expand out the substitutions in ~ df-igsum . (Contributed by Mario
147583-
Carneiro, 7-Dec-2014.) $)
147584-
igsumval $p |- ( ph -> ( G gsum F ) =
147585-
( iota x ( ( A = (/) /\ x = .0. )
147586-
\/ E. m E. n e. ( ZZ>= ` m )
147587-
( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) ) $=
147588-
( cvv fexd fdmd igsumvalx ) ABCDEFGHIJSLMNOPACDKHRQTACDHRUAUB $.
147579+
${
147580+
$d .+ x $. $d .0. x $. $d F m n x $. $d G m n x $. $d m n ph x $.
147581+
gsumval.a $e |- ( ph -> A e. X ) $.
147582+
gsumval.f $e |- ( ph -> F : A --> B ) $.
147583+
$( Expand out the substitutions in ~ df-igsum . (Contributed by Mario
147584+
Carneiro, 7-Dec-2014.) $)
147585+
igsumval $p |- ( ph -> ( G gsum F ) =
147586+
( iota x ( ( A = (/) /\ x = .0. )
147587+
\/ E. m E. n e. ( ZZ>= ` m )
147588+
( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) ) $=
147589+
( cvv fexd fdmd igsumvalx ) ABCDEFGHIJSLMNOPACDKHRQTACDHRUAUB $.
147590+
$}
147591+
147592+
${
147593+
$d .+ m n x $. $d .0. x $. $d F m n x $. $d G m n x $. $d M m n x $.
147594+
$d N m n x $. $d m n ph x $.
147595+
gsumfzval.m $e |- ( ph -> M e. ZZ ) $.
147596+
gsumfzval.n $e |- ( ph -> N e. ZZ ) $.
147597+
gsumfzval.f $e |- ( ph -> F : ( M ... N ) --> B ) $.
147598+
$( An expression for ` gsum ` when summing over a finite set of
147599+
sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.) $)
147600+
gsumfzval $p |- ( ph -> ( G gsum F ) =
147601+
if ( N < M , .0. , ( seq M ( .+ , F ) ` N ) ) ) $=
147602+
( wceq wa cvv wcel vx vm vn cgsu co cfz c0 cv cseq cfv cuz wrex wex cio
147603+
wo clt wbr cif cfn fzfigd igsumval c0g wfn elexd funfvex funfni sylancr
147604+
eqeltrid cz seqex fvexg ifexd wb wn wdc zdclt syl2anc eqifdc syl anbi1d
147605+
fn0g fzn adantr cle zred simprl nltled eluz mpbird oveq2 eqeq2d anbi12d
147606+
fveq2 adantl eqidd simprr rspcedvd oveq1 seqeq1 fveq1d rexeqbidv spcegv
147607+
sylc ex eluzel2 ad2antlr cr eluzelre eluzle lensymd eqcomd fzopth mpbid
147608+
jca simprd simpld breq12d mtbid seqeq1d fveq12d eqtrd rexlimdva2 impbid
147609+
exlimdv orbi12d bitr2d iota5 mpdan ) AEDUDUEFGUFUEZUGQZUAUHZIQZRZYIUBUH
147610+
ZUCUHZUFUEZQZYKYOCDYNUIZUJZQZRZUCYNUKUJZULZUBUMZUOZUAUNZGFUPUQZIGCDFUIZ
147611+
UJZURZAUAYIBCUBUCDEHUSIJKLMAFGNOUTPVAAUUJSTZUUFUUJQAUUGIUUISSAIEVBUJZSK
147612+
AVBSVCESTUULSTZWAAEHMVDUUMSEVBEVBVEVFVGVHAUUHSTGVITZUUISTCDFVJOGUUHSVIV
147613+
KVGVLAUUEUAUUJSAUUEYKUUJQZVMUUKAUUOUUGYLRZUUGVNZYKUUIQZRZUOZUUEAUUGVOZU
147614+
UOUUTVMAUUNFVITZUVAONGFVPVQUUGYKIUUIVRVSAUUPYMUUSUUDAUUGYJYLAUVBUUNUUGY
147615+
JVMNOFGWBVQVTAUUSUUDAUUSUUDAUUSRZUVBYIFYOUFUEZQZYKYOUUHUJZQZRZUCFUKUJZU
147616+
LZUUDAUVBUUSNWCZUVCUVHYIYIQZUURRZUCGUVIUVCGUVITZFGWDUQZUVCFGUVCFUVKWEUV
147617+
CGAUUNUUSOWCZWEAUUQUURWFWGUVCUVBUUNUVNUVOVMUVKUVPFGWHVQWIYOGQZUVHUVMVMU
147618+
VCUVQUVEUVLUVGUURUVQUVDYIYIYOGFUFWJWKUVQUVFUUIYKYOGUUHWMWKWLWNUVCUVLUUR
147619+
UVCYIWOAUUQUURWPXNWQUUCUVJUBFVIYNFQZUUAUVHUCUUBUVIYNFUKWMUVRYQUVEYTUVGU
147620+
VRYPUVDYIYNFYOUFWRWKUVRYSUVFYKUVRYOYRUUHCDYNFWSWTWKWLXAXBXCXDAUUCUUSUBA
147621+
UUAUUSUCUUBAYOUUBTZRZUUARZUUQUURUWAYOYNUPUQUUGUWAYNYOUWAYNUVSYNVITAUUAY
147622+
NYOXEXFWEUVSYOXGTAUUAYNYOXHXFUVSYNYOWDUQAUUAYNYOXIXFXJUWAYOGYNFUPUWAUVR
147623+
UVQUWAYPYIQZUVRUVQRZUWAYIYPUVTYQYTWFXKUVSUWBUWCVMAUUAFGYNYOXLXFXMZXOZUW
147624+
AUVRUVQUWDXPZXQXRUWAYKYSUUIUVTYQYTWPUWAYOGYRUUHUWAYNFCDUWFXSUWEXTYAXNYB
147625+
YDYCYEYFWCYGYHYA $.
147626+
$}
147589147627
$}
147590147628

147591147629
${
@@ -149123,6 +149161,112 @@ everywhere defined internal operation (see ~ mndcl ), whose operation is
149123149161
$}
149124149162

149125149163

149164+
$(
149165+
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
149166+
Iterated sums in a monoid
149167+
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
149168+
149169+
One important use of words is as formal composites in cases where order is
149170+
significant, using the general sum operator ~ df-igsum . If order is not
149171+
significant, it is simpler to use families instead.
149172+
149173+
$)
149174+
149175+
${
149176+
$d x y B $. $d x y G $. $d x y .+ $. $d x y .0. $.
149177+
gsumvallem2.b $e |- B = ( Base ` G ) $.
149178+
gsumvallem2.z $e |- .0. = ( 0g ` G ) $.
149179+
gsumvallem2.p $e |- .+ = ( +g ` G ) $.
149180+
gsumvallem2.o $e |- O = { x e. B |
149181+
A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } $.
149182+
$( Lemma for properties of the set of identities of ` G ` . The set of
149183+
identities of a monoid is exactly the unique identity element.
149184+
(Contributed by Mario Carneiro, 7-Dec-2014.) $)
149185+
gsumvallem2 $p |- ( G e. Mnd -> O = { .0. } ) $=
149186+
( cmnd wcel csn mgmidsssn0 cv co wceq wa wral ralrimiva eqeq1d ovanraleqv
149187+
mndidcl mndlrid oveq1 elrab2 sylanbrc snssd eqssd ) ELMZFGNABCDEFLGHIJKOU
149188+
KGFUKGCMGBPZDQZULRZULGDQULRSZBCTZGFMCEGHIUDUKUOBCCDEULGHJIUEUAAPZULDQZULR
149189+
ZULUQDQULRSBCTUPAGCFUSUNBULUQULDCGUQGRURUMULUQGULDUFUBUCKUGUHUIUJ $.
149190+
$}
149191+
149192+
${
149193+
$d x G $. $d x H $. $d x ph $. $d x S $.
149194+
gsumsubm.a $e |- ( ph -> A e. V ) $.
149195+
gsumsubm.s $e |- ( ph -> S e. ( SubMnd ` G ) ) $.
149196+
gsumsubm.f $e |- ( ph -> F : A --> S ) $.
149197+
gsumsubm.h $e |- H = ( G |`s S ) $.
149198+
$( Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro,
149199+
19-Dec-2014.) $)
149200+
gsumsubm $p |- ( ph -> ( G gsum F ) = ( H gsum F ) ) $=
149201+
( vx cbs cfv cmnd eqid wcel syl co wceq cplusg c0g csubmnd submrcl submss
149202+
wss subm0cl cv wa mndlrid sylan gsumress ) ALBEMNZEUANZCDEFOGEUBNZUMPZUNP
149203+
ZKACEUCNQZEOQZICEUDRZHAURCUMUFIUMCEUPUERJAURUOCQICEUOUOPZUGRAUSLUHZUMQUOV
149204+
BUNSVBTVBUOUNSVBTUIUTUMUNEVBUOUPUQVAUJUKUL $.
149205+
$}
149206+
149207+
${
149208+
$d .0. k w u v y $. $d A k $. $d G k w u v y $. $d M k w u v y $.
149209+
$d N k w u v y $. $d V k $.
149210+
gsumz.z $e |- .0. = ( 0g ` G ) $.
149211+
$( Value of a group sum over the zero element. (Contributed by Mario
149212+
Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.) $)
149213+
gsumfzz $p |- ( ( G e. Mnd /\ M e. ZZ /\ N e. ZZ ) ->
149214+
( G gsum ( k e. ( M ... N ) |-> .0. ) ) = .0. ) $=
149215+
( vu vv cmnd wcel co wceq wa cfv cv adantr wi fveqeq2 imbi2d cvv vw vy cz
149216+
w3a clt wbr cfz cmpt cgsu wn cplusg cseq cif cbs eqid simp1 simp2 mndidcl
149217+
simp3 syl fmpttd gsumfzval simpr iftrued iffalsed cuz zred lenltd biimpar
149218+
eqtrd cle eluz2 syl3anbrc eluzfz2 caddc eluzel2 cfn eluzelz fzfigd mptexd
149219+
ad2antrr vex fvexg sylancl plusgslid slotex ad2antlr simprr ovexg mp3an2i
149220+
seq3-1 eqidd eluzfz1 adantl fvmptd3 cfzo elfzouz elfzouz2 syl2anc sylanl1
149221+
c1 uztrn seq3p1 fzofzp1 oveq12d mndlid mpdan 3eqtrd exp31 a2d fzind2 sylc
149222+
ex wdc wo zdclt exmiddc mpjaodan ) BIJZCUCJZDUCJZUDZDCUEUFZBACDUGKZEUHZUI
149223+
KZELYCUJZYBYCMZYFYCEDBUKNZYECULZNZUMZEYBYFYLLZYCYBBUNNZYIYEBCDIEYNUOZFYIU
149224+
OZXSXTYAUPZXSXTYAUQZXSXTYAUSZYBAYDEYNYBEYNJZAOZYDJYBXSYTYQYNBEYOFURZUTPVA
149225+
VBZPYHYCEYKYBYCVCVDVJYBYGMZYFYLYKEYBYMYGUUCPUUDYCEYKYBYGVCVEUUDDYDJZXSYKE
149226+
LZUUDDCVFNZJZUUEUUDXTYACDVKUFZUUHYBXTYGYRPYBYAYGYSPYBUUIYGYBCDYBCYRVGYBDY
149227+
SVGVHVICDVLVMCDVNUTYBXSYGYQPXSUAOZYJNELZQXSCYJNZELZQXSUBOZYJNZELZQXSUUNXA
149228+
VOKZYJNZELZQXSUUFQUAUBDCDUUJCLUUKUUMXSUUJCEYJRSUUJUUNLUUKUUPXSUUJUUNEYJRS
149229+
UUJUUQLUUKUUSXSUUJUUQEYJRSUUJDLUUKUUFXSUUJDEYJRSUUHXSUUMUUHXSMZUULCYENEUU
149230+
TGHYITYECUUHXTXSCDVPPZUUTGOZUUGJZMZYETJUVBTJZUVBYENTJZUVDAYDEVQUVDCDUUTXT
149231+
UVCUVAPUUHYAXSUVCCDVRWAVSVTGWBZUVBYETTWCWDZUVEUUTUVEHOZTJZMZMYITJZUVJUVBU
149232+
VIYIKTJZUVGXSUVLUUHUVKBUKIWEWFWGUUTUVEUVJWHUVBUVIYITTTWIWJZWKUUTACEEYDYEY
149233+
NYEUOZUUACLEWLUUHCYDJXSCDWMPXSYTUUHUUBWNWOVJXMUUNCDWPKJZXSUUPUUSUVPXSUUPU
149234+
USUVPXSMZUUPMZUURUUOUUQYENZYIKZEEYIKZEUVQUURUVTLUUPUVQGHYITYECUUNUVPUUNUU
149235+
GJZXSUUNCDWQZPUVPUUHXSUVCUVFUVPDUUNVFNJUWBUUHUUNCDWRUWCUUNDCXBWSZUVHWTUVP
149236+
UUHXSUVKUVMUWDUVNWTXCPUVRUUOEUVSEYIUVQUUPVCUVQUVSELUUPUVQAUUQEEYDYEYNUVOU
149237+
UAUUQLEWLUVPUUQYDJXSCDUUNXDPXSYTUVPUUBWNWOPXEXSUWAELZUVPUUPXSYTUWEUUBYNYI
149238+
BEEYOYPFXFXGWGXHXIXJXKXLXHYBYCXNZYCYGXOYBYAXTUWFYSYRDCXPWSYCXQUTXR $.
149239+
$}
149240+
149241+
${
149242+
$d B x y $. $d F x y $. $d G x y $. $d M x y $. $d N x y $.
149243+
$d ph x y $.
149244+
gsumcl.b $e |- B = ( Base ` G ) $.
149245+
gsumcl.z $e |- .0. = ( 0g ` G ) $.
149246+
gsumfzcl.g $e |- ( ph -> G e. Mnd ) $.
149247+
gsumfzcl.m $e |- ( ph -> M e. ZZ ) $.
149248+
gsumfzcl.n $e |- ( ph -> N e. ZZ ) $.
149249+
gsumfzcl.f $e |- ( ph -> F : ( M ... N ) --> B ) $.
149250+
$( Closure of a finite group sum. (Contributed by Mario Carneiro,
149251+
15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon,
149252+
16-Aug-2025.) $)
149253+
gsumfzcl $p |- ( ph -> ( G gsum F ) e. B ) $=
149254+
( vx wcel wa cfv adantr cvv ad2antrr vy clt wbr cgsu cplusg cseq cif wceq
149255+
co wn cmnd eqid gsumfzval simpr iftrued eqtrd mndidcl eqeltrd iffalsed cz
149256+
syl cle cuz zred nltled eluz2 syl3anbrc cfz cfn fzfigd fexd fvexg sylancl
149257+
cv vex ffvelcdmd simprl simprr mndcl syl3anc wss ssv a1i plusgslid slotex
149258+
wf ovexg seq3clss wdc wo zdclt syl2anc exmiddc mpjaodan ) AFEUBUCZDCUDUIZ
149259+
BOWOUJZAWOPZWPGBWRWPWOGFDUEQZCEUFQZUGZGAWPXAUHZWOABWSCDEFUKGHIWSULZJKLMUM
149260+
ZRWRWOGWTAWOUNUOUPAGBOZWOADUKOZXEJBDGHIUQVARURAWQPZWPWTBXGWPXAWTAXBWQXDRX
149261+
GWOGWTAWQUNZUSUPXGNUAWSBSCEFXGEUTOZFUTOZEFVBUCFEVCQZOAXIWQKRZAXJWQLRZXGEF
149262+
XGEXLVDXGFXMVDXHVEEFVFVGXGNVNZXKOZPCSOZXNSOZXNCQSOAXPWQXOAEFVHUIZBVICMAEF
149263+
KLVJVKTNVOXNCSSVLVMXGXNXROZPXRBXNCAXRBCWFWQXSMTXGXSUNVPXGXNBOZUAVNZBOZPZP
149264+
XFXTYBXNYAWSUIZBOAXFWQYCJTXGXTYBVQXGXTYBVRBWSDXNYAHXCVSVTBSWAXGBWBWCXGXQY
149265+
ASOZPZPXQWSSOZYEYDSOXGXQYEVQAYGWQYFAXFYGJDUEUKWDWEVATXGXQYEVRXNYAWSSSSWGV
149266+
TWHURAWOWIZWOWQWJAXJXIYHLKFEWKWLWOWMVAWN $.
149267+
$}
149268+
149269+
149126149270
$(
149127149271
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
149128149272
Groups

mmil.raw.html

Lines changed: 43 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10703,7 +10703,7 @@
1070310703

1070410704
<tr>
1070510705
<td>gsumval</td>
10706-
<td>~ igsumval</td>
10706+
<td>~ igsumval , ~ gsumfzval</td>
1070710707
<td>reflects differences between df-gsum and ~ df-igsum</td>
1070810708
</tr>
1070910709

@@ -10816,6 +10816,21 @@
1081610816
not present in iset.mm</td>
1081710817
</tr>
1081810818

10819+
<tr>
10820+
<td>gsumz</td>
10821+
<td>~ gsumfzz</td>
10822+
<td>the group sum needs to be indexed by
10823+
consecutive integers</td>
10824+
</tr>
10825+
10826+
<tr>
10827+
<td>gsumwsubmcl , gsumws1 , gsumwcl , gsumsgrpccat ,
10828+
gsumccat , gsumws2 , gsumccatsn , gsumspl , gsumwmhm ,
10829+
gsumwspan</td>
10830+
<td><i>none</i></td>
10831+
<td>should be feasible once Word is defined</td>
10832+
</tr>
10833+
1081910834
<tr>
1082010835
<td>resgrpplusfrn</td>
1082110836
<td><i>none</i></td>
@@ -11040,6 +11055,33 @@
1104011055
<td>adds set existence condition for ` S `</td>
1104111056
</tr>
1104211057

11058+
<tr>
11059+
<td>gsumval3a , gsumval3eu , gsumval3lem1 , gsumval3lem2 ,
11060+
gsumval3 , gsumcllem , gsumzres , gsumzcl2 , gsumzcl ,
11061+
gsumzf1o , gsumres , gsumcl2</td>
11062+
<td>~ gsumval2 , ~ gsumfzval</td>
11063+
<td>these are all in terms of support which we could
11064+
define but which would require additional conditions
11065+
for example decidable equality of group elements</td>
11066+
</tr>
11067+
11068+
<tr>
11069+
<td>gsumcl</td>
11070+
<td>~ gsumfzcl</td>
11071+
<td>The group sum needs to be indexed by
11072+
consecutive integers. Also, we don't need
11073+
commutativity since the order is specified.</td>
11074+
</tr>
11075+
11076+
<tr>
11077+
<td>gsumf1o</td>
11078+
<td><i>none</i></td>
11079+
<td>since this theorem sums a set indexed by
11080+
an arbitrary finite set rather than consecutive
11081+
integers, it won't work as-is as long as ` gsum `
11082+
is defined with ~ df-igsum</td>
11083+
</tr>
11084+
1104311085
<tr>
1104411086
<td>mgpval</td>
1104511087
<td>~ mgpvalg</td>

0 commit comments

Comments
 (0)