@@ -147576,16 +147576,54 @@ arbitrary magmas (then it should be called "iterated sum"). If the magma is
147576
147576
AXMWQXNUVDUVESSXOXPWNUUKBSXQWMXR $.
147577
147577
$}
147578
147578
147579
- $d .+ x $. $d .0. x $. $d F m n x $. $d G m n x $. $d m n ph x $.
147580
- gsumval.a $e |- ( ph -> A e. X ) $.
147581
- gsumval.f $e |- ( ph -> F : A --> B ) $.
147582
- $( Expand out the substitutions in ~ df-igsum . (Contributed by Mario
147583
- Carneiro, 7-Dec-2014.) $)
147584
- igsumval $p |- ( ph -> ( G gsum F ) =
147585
- ( iota x ( ( A = (/) /\ x = .0. )
147586
- \/ E. m E. n e. ( ZZ>= ` m )
147587
- ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) ) $=
147588
- ( cvv fexd fdmd igsumvalx ) ABCDEFGHIJSLMNOPACDKHRQTACDHRUAUB $.
147579
+ ${
147580
+ $d .+ x $. $d .0. x $. $d F m n x $. $d G m n x $. $d m n ph x $.
147581
+ gsumval.a $e |- ( ph -> A e. X ) $.
147582
+ gsumval.f $e |- ( ph -> F : A --> B ) $.
147583
+ $( Expand out the substitutions in ~ df-igsum . (Contributed by Mario
147584
+ Carneiro, 7-Dec-2014.) $)
147585
+ igsumval $p |- ( ph -> ( G gsum F ) =
147586
+ ( iota x ( ( A = (/) /\ x = .0. )
147587
+ \/ E. m E. n e. ( ZZ>= ` m )
147588
+ ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) ) $=
147589
+ ( cvv fexd fdmd igsumvalx ) ABCDEFGHIJSLMNOPACDKHRQTACDHRUAUB $.
147590
+ $}
147591
+
147592
+ ${
147593
+ $d .+ m n x $. $d .0. x $. $d F m n x $. $d G m n x $. $d M m n x $.
147594
+ $d N m n x $. $d m n ph x $.
147595
+ gsumfzval.m $e |- ( ph -> M e. ZZ ) $.
147596
+ gsumfzval.n $e |- ( ph -> N e. ZZ ) $.
147597
+ gsumfzval.f $e |- ( ph -> F : ( M ... N ) --> B ) $.
147598
+ $( An expression for ` gsum ` when summing over a finite set of
147599
+ sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.) $)
147600
+ gsumfzval $p |- ( ph -> ( G gsum F ) =
147601
+ if ( N < M , .0. , ( seq M ( .+ , F ) ` N ) ) ) $=
147602
+ ( wceq wa cvv wcel vx vm vn cgsu co cfz c0 cv cseq cfv cuz wrex wex cio
147603
+ wo clt wbr cif cfn fzfigd igsumval c0g wfn elexd funfvex funfni sylancr
147604
+ eqeltrid cz seqex fvexg ifexd wb wn wdc zdclt syl2anc eqifdc syl anbi1d
147605
+ fn0g fzn adantr cle zred simprl nltled eluz mpbird oveq2 eqeq2d anbi12d
147606
+ fveq2 adantl eqidd simprr rspcedvd oveq1 seqeq1 fveq1d rexeqbidv spcegv
147607
+ sylc ex eluzel2 ad2antlr cr eluzelre eluzle lensymd eqcomd fzopth mpbid
147608
+ jca simprd simpld breq12d mtbid seqeq1d fveq12d eqtrd rexlimdva2 impbid
147609
+ exlimdv orbi12d bitr2d iota5 mpdan ) AEDUDUEFGUFUEZUGQZUAUHZIQZRZYIUBUH
147610
+ ZUCUHZUFUEZQZYKYOCDYNUIZUJZQZRZUCYNUKUJZULZUBUMZUOZUAUNZGFUPUQZIGCDFUIZ
147611
+ UJZURZAUAYIBCUBUCDEHUSIJKLMAFGNOUTPVAAUUJSTZUUFUUJQAUUGIUUISSAIEVBUJZSK
147612
+ AVBSVCESTUULSTZWAAEHMVDUUMSEVBEVBVEVFVGVHAUUHSTGVITZUUISTCDFVJOGUUHSVIV
147613
+ KVGVLAUUEUAUUJSAUUEYKUUJQZVMUUKAUUOUUGYLRZUUGVNZYKUUIQZRZUOZUUEAUUGVOZU
147614
+ UOUUTVMAUUNFVITZUVAONGFVPVQUUGYKIUUIVRVSAUUPYMUUSUUDAUUGYJYLAUVBUUNUUGY
147615
+ JVMNOFGWBVQVTAUUSUUDAUUSUUDAUUSRZUVBYIFYOUFUEZQZYKYOUUHUJZQZRZUCFUKUJZU
147616
+ LZUUDAUVBUUSNWCZUVCUVHYIYIQZUURRZUCGUVIUVCGUVITZFGWDUQZUVCFGUVCFUVKWEUV
147617
+ CGAUUNUUSOWCZWEAUUQUURWFWGUVCUVBUUNUVNUVOVMUVKUVPFGWHVQWIYOGQZUVHUVMVMU
147618
+ VCUVQUVEUVLUVGUURUVQUVDYIYIYOGFUFWJWKUVQUVFUUIYKYOGUUHWMWKWLWNUVCUVLUUR
147619
+ UVCYIWOAUUQUURWPXNWQUUCUVJUBFVIYNFQZUUAUVHUCUUBUVIYNFUKWMUVRYQUVEYTUVGU
147620
+ VRYPUVDYIYNFYOUFWRWKUVRYSUVFYKUVRYOYRUUHCDYNFWSWTWKWLXAXBXCXDAUUCUUSUBA
147621
+ UUAUUSUCUUBAYOUUBTZRZUUARZUUQUURUWAYOYNUPUQUUGUWAYNYOUWAYNUVSYNVITAUUAY
147622
+ NYOXEXFWEUVSYOXGTAUUAYNYOXHXFUVSYNYOWDUQAUUAYNYOXIXFXJUWAYOGYNFUPUWAUVR
147623
+ UVQUWAYPYIQZUVRUVQRZUWAYIYPUVTYQYTWFXKUVSUWBUWCVMAUUAFGYNYOXLXFXMZXOZUW
147624
+ AUVRUVQUWDXPZXQXRUWAYKYSUUIUVTYQYTWPUWAYOGYRUUHUWAYNFCDUWFXSUWEXTYAXNYB
147625
+ YDYCYEYFWCYGYHYA $.
147626
+ $}
147589
147627
$}
147590
147628
147591
147629
${
@@ -149123,6 +149161,112 @@ everywhere defined internal operation (see ~ mndcl ), whose operation is
149123
149161
$}
149124
149162
149125
149163
149164
+ $(
149165
+ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
149166
+ Iterated sums in a monoid
149167
+ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
149168
+
149169
+ One important use of words is as formal composites in cases where order is
149170
+ significant, using the general sum operator ~ df-igsum . If order is not
149171
+ significant, it is simpler to use families instead.
149172
+
149173
+ $)
149174
+
149175
+ ${
149176
+ $d x y B $. $d x y G $. $d x y .+ $. $d x y .0. $.
149177
+ gsumvallem2.b $e |- B = ( Base ` G ) $.
149178
+ gsumvallem2.z $e |- .0. = ( 0g ` G ) $.
149179
+ gsumvallem2.p $e |- .+ = ( +g ` G ) $.
149180
+ gsumvallem2.o $e |- O = { x e. B |
149181
+ A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } $.
149182
+ $( Lemma for properties of the set of identities of ` G ` . The set of
149183
+ identities of a monoid is exactly the unique identity element.
149184
+ (Contributed by Mario Carneiro, 7-Dec-2014.) $)
149185
+ gsumvallem2 $p |- ( G e. Mnd -> O = { .0. } ) $=
149186
+ ( cmnd wcel csn mgmidsssn0 cv co wceq wa wral ralrimiva eqeq1d ovanraleqv
149187
+ mndidcl mndlrid oveq1 elrab2 sylanbrc snssd eqssd ) ELMZFGNABCDEFLGHIJKOU
149188
+ KGFUKGCMGBPZDQZULRZULGDQULRSZBCTZGFMCEGHIUDUKUOBCCDEULGHJIUEUAAPZULDQZULR
149189
+ ZULUQDQULRSBCTUPAGCFUSUNBULUQULDCGUQGRURUMULUQGULDUFUBUCKUGUHUIUJ $.
149190
+ $}
149191
+
149192
+ ${
149193
+ $d x G $. $d x H $. $d x ph $. $d x S $.
149194
+ gsumsubm.a $e |- ( ph -> A e. V ) $.
149195
+ gsumsubm.s $e |- ( ph -> S e. ( SubMnd ` G ) ) $.
149196
+ gsumsubm.f $e |- ( ph -> F : A --> S ) $.
149197
+ gsumsubm.h $e |- H = ( G |`s S ) $.
149198
+ $( Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro,
149199
+ 19-Dec-2014.) $)
149200
+ gsumsubm $p |- ( ph -> ( G gsum F ) = ( H gsum F ) ) $=
149201
+ ( vx cbs cfv cmnd eqid wcel syl co wceq cplusg c0g csubmnd submrcl submss
149202
+ wss subm0cl cv wa mndlrid sylan gsumress ) ALBEMNZEUANZCDEFOGEUBNZUMPZUNP
149203
+ ZKACEUCNQZEOQZICEUDRZHAURCUMUFIUMCEUPUERJAURUOCQICEUOUOPZUGRAUSLUHZUMQUOV
149204
+ BUNSVBTVBUOUNSVBTUIUTUMUNEVBUOUPUQVAUJUKUL $.
149205
+ $}
149206
+
149207
+ ${
149208
+ $d .0. k w u v y $. $d A k $. $d G k w u v y $. $d M k w u v y $.
149209
+ $d N k w u v y $. $d V k $.
149210
+ gsumz.z $e |- .0. = ( 0g ` G ) $.
149211
+ $( Value of a group sum over the zero element. (Contributed by Mario
149212
+ Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.) $)
149213
+ gsumfzz $p |- ( ( G e. Mnd /\ M e. ZZ /\ N e. ZZ ) ->
149214
+ ( G gsum ( k e. ( M ... N ) |-> .0. ) ) = .0. ) $=
149215
+ ( vu vv cmnd wcel co wceq wa cfv cv adantr wi fveqeq2 imbi2d cvv vw vy cz
149216
+ w3a clt wbr cfz cmpt cgsu wn cplusg cseq cif cbs eqid simp1 simp2 mndidcl
149217
+ simp3 syl fmpttd gsumfzval simpr iftrued iffalsed cuz zred lenltd biimpar
149218
+ eqtrd cle eluz2 syl3anbrc eluzfz2 caddc eluzel2 cfn eluzelz fzfigd mptexd
149219
+ ad2antrr vex fvexg sylancl plusgslid slotex ad2antlr simprr ovexg mp3an2i
149220
+ seq3-1 eqidd eluzfz1 adantl fvmptd3 cfzo elfzouz elfzouz2 syl2anc sylanl1
149221
+ c1 uztrn seq3p1 fzofzp1 oveq12d mndlid mpdan 3eqtrd exp31 a2d fzind2 sylc
149222
+ ex wdc wo zdclt exmiddc mpjaodan ) BIJZCUCJZDUCJZUDZDCUEUFZBACDUGKZEUHZUI
149223
+ KZELYCUJZYBYCMZYFYCEDBUKNZYECULZNZUMZEYBYFYLLZYCYBBUNNZYIYEBCDIEYNUOZFYIU
149224
+ OZXSXTYAUPZXSXTYAUQZXSXTYAUSZYBAYDEYNYBEYNJZAOZYDJYBXSYTYQYNBEYOFURZUTPVA
149225
+ VBZPYHYCEYKYBYCVCVDVJYBYGMZYFYLYKEYBYMYGUUCPUUDYCEYKYBYGVCVEUUDDYDJZXSYKE
149226
+ LZUUDDCVFNZJZUUEUUDXTYACDVKUFZUUHYBXTYGYRPYBYAYGYSPYBUUIYGYBCDYBCYRVGYBDY
149227
+ SVGVHVICDVLVMCDVNUTYBXSYGYQPXSUAOZYJNELZQXSCYJNZELZQXSUBOZYJNZELZQXSUUNXA
149228
+ VOKZYJNZELZQXSUUFQUAUBDCDUUJCLUUKUUMXSUUJCEYJRSUUJUUNLUUKUUPXSUUJUUNEYJRS
149229
+ UUJUUQLUUKUUSXSUUJUUQEYJRSUUJDLUUKUUFXSUUJDEYJRSUUHXSUUMUUHXSMZUULCYENEUU
149230
+ TGHYITYECUUHXTXSCDVPPZUUTGOZUUGJZMZYETJUVBTJZUVBYENTJZUVDAYDEVQUVDCDUUTXT
149231
+ UVCUVAPUUHYAXSUVCCDVRWAVSVTGWBZUVBYETTWCWDZUVEUUTUVEHOZTJZMZMYITJZUVJUVBU
149232
+ VIYIKTJZUVGXSUVLUUHUVKBUKIWEWFWGUUTUVEUVJWHUVBUVIYITTTWIWJZWKUUTACEEYDYEY
149233
+ NYEUOZUUACLEWLUUHCYDJXSCDWMPXSYTUUHUUBWNWOVJXMUUNCDWPKJZXSUUPUUSUVPXSUUPU
149234
+ USUVPXSMZUUPMZUURUUOUUQYENZYIKZEEYIKZEUVQUURUVTLUUPUVQGHYITYECUUNUVPUUNUU
149235
+ GJZXSUUNCDWQZPUVPUUHXSUVCUVFUVPDUUNVFNJUWBUUHUUNCDWRUWCUUNDCXBWSZUVHWTUVP
149236
+ UUHXSUVKUVMUWDUVNWTXCPUVRUUOEUVSEYIUVQUUPVCUVQUVSELUUPUVQAUUQEEYDYEYNUVOU
149237
+ UAUUQLEWLUVPUUQYDJXSCDUUNXDPXSYTUVPUUBWNWOPXEXSUWAELZUVPUUPXSYTUWEUUBYNYI
149238
+ BEEYOYPFXFXGWGXHXIXJXKXLXHYBYCXNZYCYGXOYBYAXTUWFYSYRDCXPWSYCXQUTXR $.
149239
+ $}
149240
+
149241
+ ${
149242
+ $d B x y $. $d F x y $. $d G x y $. $d M x y $. $d N x y $.
149243
+ $d ph x y $.
149244
+ gsumcl.b $e |- B = ( Base ` G ) $.
149245
+ gsumcl.z $e |- .0. = ( 0g ` G ) $.
149246
+ gsumfzcl.g $e |- ( ph -> G e. Mnd ) $.
149247
+ gsumfzcl.m $e |- ( ph -> M e. ZZ ) $.
149248
+ gsumfzcl.n $e |- ( ph -> N e. ZZ ) $.
149249
+ gsumfzcl.f $e |- ( ph -> F : ( M ... N ) --> B ) $.
149250
+ $( Closure of a finite group sum. (Contributed by Mario Carneiro,
149251
+ 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon,
149252
+ 16-Aug-2025.) $)
149253
+ gsumfzcl $p |- ( ph -> ( G gsum F ) e. B ) $=
149254
+ ( vx wcel wa cfv adantr cvv ad2antrr vy clt wbr cgsu cplusg cseq cif wceq
149255
+ co wn cmnd eqid gsumfzval simpr iftrued eqtrd mndidcl eqeltrd iffalsed cz
149256
+ syl cle cuz zred nltled eluz2 syl3anbrc cfz cfn fzfigd fexd fvexg sylancl
149257
+ cv vex ffvelcdmd simprl simprr mndcl syl3anc wss ssv a1i plusgslid slotex
149258
+ wf ovexg seq3clss wdc wo zdclt syl2anc exmiddc mpjaodan ) AFEUBUCZDCUDUIZ
149259
+ BOWOUJZAWOPZWPGBWRWPWOGFDUEQZCEUFQZUGZGAWPXAUHZWOABWSCDEFUKGHIWSULZJKLMUM
149260
+ ZRWRWOGWTAWOUNUOUPAGBOZWOADUKOZXEJBDGHIUQVARURAWQPZWPWTBXGWPXAWTAXBWQXDRX
149261
+ GWOGWTAWQUNZUSUPXGNUAWSBSCEFXGEUTOZFUTOZEFVBUCFEVCQZOAXIWQKRZAXJWQLRZXGEF
149262
+ XGEXLVDXGFXMVDXHVEEFVFVGXGNVNZXKOZPCSOZXNSOZXNCQSOAXPWQXOAEFVHUIZBVICMAEF
149263
+ KLVJVKTNVOXNCSSVLVMXGXNXROZPXRBXNCAXRBCWFWQXSMTXGXSUNVPXGXNBOZUAVNZBOZPZP
149264
+ XFXTYBXNYAWSUIZBOAXFWQYCJTXGXTYBVQXGXTYBVRBWSDXNYAHXCVSVTBSWAXGBWBWCXGXQY
149265
+ ASOZPZPXQWSSOZYEYDSOXGXQYEVQAYGWQYFAXFYGJDUEUKWDWEVATXGXQYEVRXNYAWSSSSWGV
149266
+ TWHURAWOWIZWOWQWJAXJXIYHLKFEWKWLWOWMVAWN $.
149267
+ $}
149268
+
149269
+
149126
149270
$(
149127
149271
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
149128
149272
Groups
0 commit comments