@@ -29995,11 +29995,25 @@ choice between (what we call) a "definitional form" where the shorter
29995
29995
$}
29996
29996
29997
29997
${
29998
- $d x A $. $d y A $. $d y ph $. $d x ps $.
29998
+ $d x y A $. $d y ph $. $d x ps $.
29999
29999
cbvrabv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
30000
30000
$( Rule to change the bound variable in a restricted class abstraction,
30001
- using implicit substitution. (Contributed by NM, 26-May-1999.) $)
30001
+ using implicit substitution. (Contributed by NM, 26-May-1999.) Require
30002
+ ` x ` , ` y ` be disjoint to avoid ~ ax-11 and ~ ax-13 . (Revised by
30003
+ Steven Nguyen, 4-Dec-2022.) $)
30002
30004
cbvrabv $p |- { x e. A | ph } = { y e. A | ps } $=
30005
+ ( cv wcel wa cab crab weq eleq1w anbi12d cbvabv df-rab 3eqtr4i ) CGEHZAIZ
30006
+ CJDGEHZBIZDJACEKBDEKSUACDCDLRTABCDEMFNOACEPBDEPQ $.
30007
+ $}
30008
+
30009
+ ${
30010
+ $d x A $. $d y A $. $d y ph $. $d x ps $.
30011
+ cbvrabvOLD.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
30012
+ $( Obsolete version of ~ cbvrabv as of 14-Jun-2023. Rule to change the
30013
+ bound variable in a restricted class abstraction, using implicit
30014
+ substitution. (Contributed by NM, 26-May-1999.)
30015
+ (New usage is discouraged.) (Proof modification is discouraged.) $)
30016
+ cbvrabvOLD $p |- { x e. A | ph } = { y e. A | ps } $=
30003
30017
( nfcv nfv cbvrab ) ABCDECEGDEGADHBCHFI $.
30004
30018
$}
30005
30019
@@ -32893,6 +32907,20 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy
32893
32907
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
32894
32908
$)
32895
32909
32910
+ ${
32911
+ $d x y A $.
32912
+ $( Relative version of Russell's paradox ~ ru (which corresponds to the
32913
+ case ` A = _V ` ).
32914
+
32915
+ Originally a subproof in ~ pwnss . (Contributed by Stefan O'Rear,
32916
+ 22-Feb-2015.) Avoid ~ df-nel . (Revised by Steven Nguyen,
32917
+ 23-Nov-2022.) $)
32918
+ rru $p |- -. { x e. A | -. x e. x } e. A $=
32919
+ ( vy wel wn crab wcel wa wb cv eleq12 anidms notbid cbvrabv elrab2 pclem6
32920
+ wceq weq ax-mp ) AADZEZABFZUBGZUBBGZUCEZHIUDECCDZEZUECUBBUBCJZUBQZUFUCUIU
32921
+ FUCIUHUBUHUBKLMUAUGACBACRZTUFUJTUFIAJZUHUKUHKLMNOUCUDPS $.
32922
+ $}
32923
+
32896
32924
${
32897
32925
$d x y $.
32898
32926
$( Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
@@ -45891,15 +45919,12 @@ holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc]
45891
45919
$}
45892
45920
45893
45921
${
45894
- $d A x y $. $d V x y $.
45922
+ $d A x $.
45895
45923
$( The power set of a set is never a subset. (Contributed by Stefan
45896
45924
O'Rear, 22-Feb-2015.) $)
45897
45925
pwnss $p |- ( A e. V -> -. ~P A C_ A ) $=
45898
- ( vx vy cpw cv wnel crab wcel wn wa wb eleq12 anidms notbid df-nel syl5bb
45899
- wss wceq cbvrabv elrab2 pclem6 ax-mp ssel mtoi ssrab2 elpw2g mpbiri nsyl3
45900
- ) AEZARZCFZULGZCAHZUJIZABIZUKUOUNAIZUNUNIZUQURJZKLUQJDFZUTIZJZUSDUNAUNUTU
45901
- NSZVAURVCVAURLUTUNUTUNMNOUMVBCDAUMULULIZJULUTSZVBULULPVEVDVAVEVDVALULUTUL
45902
- UTMNOQTUAURUQUBUCUJAUNUDUEUPUOUNARUMCAUFUNABUGUHUI $.
45926
+ ( vx cpw wss wel wn crab wcel rru ssel mtoi ssrab2 elpw2g mpbiri nsyl3 )
45927
+ ADZAEZCCFGZCAHZQIZABIZRUATAICAJQATKLUBUATAESCAMTABNOP $.
45903
45928
$}
45904
45929
45905
45930
$( No set equals its power set. The sethood antecedent is necessary; compare
@@ -616091,47 +616116,6 @@ fixed reference functional determined by this vector (corresponding to
616091
616116
$}
616092
616117
616093
616118
616094
- $(
616095
- =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
616096
- Russell's paradox
616097
- =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
616098
- $)
616099
-
616100
- ${
616101
- $d x y $. $d y z ph $. $d x z ps $.
616102
- cbvabvw.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
616103
- $( Version of ~ cbvabv with a distinct variable condition on x and y, which
616104
- removes dependencies on ~ ax-11 and ~ ax-13 . (Contributed by Steven
616105
- Nguyen, 4-Dec-2022.) $)
616106
- cbvabvw $p |- { x | ph } = { y | ps } $=
616107
- ( vz cab wsb cv wcel weq wi wal equequ1 imbi12d cbvalvw sb6 3bitr4i eqriv
616108
- df-clab ) FACGZBDGZACFHZBDFHZFIZUAJUEUBJCFKZALZCMDFKZBLZDMUCUDUGUICDCDKUF
616109
- UHABCDFNEOPACFQBDFQRAFCTBFDTRS $.
616110
-
616111
- $d x y A $.
616112
- $( Version of ~ cbvrabv with a distinct variable condition on x and y,
616113
- which removes dependencies on ~ ax-11 and ~ ax-13 . (Contributed by
616114
- Steven Nguyen, 4-Dec-2022.) $)
616115
- cbvrabvw $p |- { x e. A | ph } = { y e. A | ps } $=
616116
- ( cv wcel wa cab crab weq eleq1w anbi12d cbvabvw df-rab 3eqtr4i ) CGEHZAI
616117
- ZCJDGEHZBIZDJACEKBDEKSUACDCDLRTABCDEMFNOACEPBDEPQ $.
616118
- $}
616119
-
616120
- ${
616121
- $d x y A $.
616122
- $( Relative version of Russell's paradox ~ ru (which corresponds to the
616123
- case ` A = _V ` ).
616124
-
616125
- Originally a subproof in ~ pwnss . (Contributed by Stefan O'Rear,
616126
- 22-Feb-2015.) Remove usage of ~ ax-13 . (Revised by Steven Nguyen,
616127
- 20-Nov-2022.) $)
616128
- rru $p |- -. { x e. A | -. x e. x } e. A $=
616129
- ( vy wel wn crab wcel wa wb wceq eleq12 anidms notbid weq cbvrabvw elrab2
616130
- cv pclem6 ax-mp ) AADZEZABFZUBGZUBBGZUCEZHIUDECCDZEZUECUBBUBCQZUBJZUFUCUI
616131
- UFUCIUHUBUHUBKLMUAUGACBACNZTUFUJTUFIAQZUHUKUHKLMOPUCUDRS $.
616132
- $}
616133
-
616134
-
616135
616119
$(
616136
616120
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
616137
616121
Arithmetic theorems
0 commit comments