@@ -499245,6 +499245,54 @@ have become an indirect lemma of the theorem in question (i.e. a lemma
499245
499245
CUQIJVJABCURABCDEUSQSUT $.
499246
499246
$}
499247
499247
499248
+ ${
499249
+ $d P k $. $d S k $. $d k F $. $d k G $.
499250
+ $( If a walk exists in a subgraph of a graph ` G ` , then that walk also
499251
+ exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499252
+ subgrwlk $p |- ( S SubGraph G ->
499253
+ ( F ( Walks ` S ) P -> F ( Walks ` G ) P ) ) $=
499254
+ ( vk wbr cwlks cfv ciedg wcel co wceq wss wral w3a wa cvv eqid syl wi cdm
499255
+ csubgr cword cc0 chash cfz cvtx wf cv c1 caddc csn cpr wif cfzo wb subgrv
499256
+ simpld iswlkg 3simpa cedg cpw subgrprop2 simp2d dmss sswrd 3syl sseld fss
499257
+ simp1d expcom anim12d syl5 3simpb biidd cres subgrprop 3ad2ant1 wrdsymbcl
499258
+ fveq1d fvresd 3adant1 eqtrd eqeq1d sseq2d ifpbi123d biimpd ralrimiv ralim
499259
+ 3expia expimpd jcad sylbid df-3an syl6ibr simpl2im sylibrd ) BDUBFZCABGHF
499260
+ ZCDIHZUAZUCZJZUDCUEHZUFKZDUGHZAUHZEUIZAHZXHUJUKKAHZLZXHCHZWTHZXIULZLZXIXJ
499261
+ UMZXMMZUNZEUDXDUOKZNZOZCADGHFZWRWSXCXGPZXTPZYAWRWSCBIHZUAZUCZJZXEBUGHZAUH
499262
+ ZXKXLYEHZXNLZXPYKMZUNZEXSNZOZYDWRBQJZWSYPUPWRYQDQJZBDUQZURAECBYEYIQYIRZYE
499263
+ RZUSSWRYPYCXTYPYHYJPWRYCYHYJYOUTWRYHXCYJXGWRYGXBCWRYEWTMZYFXAMYGXBMWRYIXF
499264
+ MZUUBBVAHZYIVBMZXFWTBUUDDYEYIYTXFRZUUAWTRZUUDRZVCZVDYEWTVEYFXAVFVGVHWRUUC
499265
+ YJXGTWRUUCUUBUUEUUIVJYJUUCXGXEYIXFAVIVKSVLVMYPYHYOPWRXTYHYJYOVNWRYHYOXTWR
499266
+ YHPZYNXRTZEXSNYOXTTUUJUUKEXSWRYHXHXSJZUUKWRYHUULOZYNXRUUMXKYLYMXKXOXQUUMX
499267
+ KVOUUMYKXMXNUUMYKXLWTYFVPZHZXMWRYHYKUUOLUULWRXLYEUUNWRUUCYEUUNLUUEXFWTBUU
499268
+ DDYEYIYTUUFUUAUUGUUHVQVDVTVRYHUULUUOXMLWRYHUULPXLYFWTXHYFCVSWAWBWCZWDUUMY
499269
+ KXMXPUUPWEWFWGWJWHYNXREXSWISWKVMWLWMXCXGXTWNWOWRYQYRYBYAUPYSAECDWTXFQUUFU
499270
+ UGUSWPWQ $.
499271
+ $}
499272
+
499273
+ $( If a trail exists in a subgraph of a graph ` G ` , then that trail also
499274
+ exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499275
+ subgrtrl $p |- ( S SubGraph G ->
499276
+ ( F ( Trails ` S ) P -> F ( Trails ` G ) P ) ) $=
499277
+ ( csubgr wbr cwlks cfv ccnv wfun wa ctrls subgrwlk anim1d istrl 3imtr4g ) B
499278
+ DEFZCABGHFZCIJZKCADGHFZSKCABLHFCADLHFQRTSABCDMNACBOACDOP $.
499279
+
499280
+ $( If a path exists in a subgraph of a graph ` G ` , then that path also
499281
+ exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499282
+ subgrpth $p |- ( S SubGraph G ->
499283
+ ( F ( Paths ` S ) P -> F ( Paths ` G ) P ) ) $=
499284
+ ( csubgr wbr ctrls cfv c1 chash cfzo co cres ccnv wfun cima w3a cpths ispth
499285
+ idd cc0 cpr cin c0 wceq subgrtrl 3anim123d 3imtr4g ) BDEFZCABGHFZAICJHZKLZM
499286
+ NOZAUAUKUBPAULPUCUDUEZQCADGHFZUMUNQCABRHFCADRHFUIUJUOUMUMUNUNABCDUFUIUMTUIU
499287
+ NTUGACBSACDSUH $.
499288
+
499289
+ $( If a cycle exists in a subgraph of a graph ` G ` , then that cycle also
499290
+ exists in ` G ` . (Contributed by BTernaryTau, 23-Oct-2023.) $)
499291
+ subgrcycl $p |- ( S SubGraph G ->
499292
+ ( F ( Cycles ` S ) P -> F ( Cycles ` G ) P ) ) $=
499293
+ ( csubgr wbr cpths cfv cc0 chash wceq ccycls subgrpth anim1d iscycl 3imtr4g
499294
+ wa ) BDEFZCABGHFZIAHCJHAHKZQCADGHFZTQCABLHFCADLHFRSUATABCDMNACBOACDOP $.
499295
+
499248
499296
${
499249
499297
$d V a b c $. $d f G p a b c $.
499250
499298
cusgr3cyclex.1 $e |- V = ( Vtx ` G ) $.
@@ -499602,6 +499650,19 @@ property of an acyclic graph (see also ~ acycgr0v ). (Contributed by
499602
499650
NUMUPULURUPULMUMABCORUKUPURMULUKUPURABCPSTUAUSUNUPABCUBUCUHULUQUKABCUDUEUNU
499603
499651
PUNUFUIUNUGUJ $.
499604
499652
499653
+ ${
499654
+ $d S f p $. $d f G p $.
499655
+ $( The subgraph of an acyclic graph is also acyclic. (Contributed by
499656
+ BTernaryTau, 23-Oct-2023.) $)
499657
+ acycgrsubgr $p |- ( ( G e. AcyclicGraph /\ S SubGraph G ) ->
499658
+ S e. AcyclicGraph ) $=
499659
+ ( vf vp csubgr wbr cacycgr wcel cv ccycls cfv c0 wne wa wex subgrcycl cvv
499660
+ wn wb isacycgr anim1d 2eximdv con3d subgrv simpl2im simpld 3imtr4d impcom
499661
+ syl ) ABEFZBGHZAGHZUJCIZDIZBJKFZUMLMZNZDOCOZRZUMUNAJKFZUPNZDOCOZRZUKULUJV
499662
+ BURUJVAUQCDUJUTUOUPUNAUMBPUAUBUCUJAQHZBQHZUKUSSABUDZCBQDTUEUJVDULVCSUJVDV
499663
+ EVFUFCAQDTUIUGUH $.
499664
+ $}
499665
+
499605
499666
$( (End of BTernaryTau's mathbox.) $)
499606
499667
499607
499668
0 commit comments