Skip to content

Commit 1970487

Browse files
authored
Prove acycgrsubgr (#3605)
* Prove subgrwlk * Prove subgrtrl * Prove subgrpth * Prove subgrcycl * Rewrap * Prove acycgrsubgr
1 parent 8c9e519 commit 1970487

File tree

1 file changed

+61
-0
lines changed

1 file changed

+61
-0
lines changed

set.mm

Lines changed: 61 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -499245,6 +499245,54 @@ have become an indirect lemma of the theorem in question (i.e. a lemma
499245499245
CUQIJVJABCURABCDEUSQSUT $.
499246499246
$}
499247499247

499248+
${
499249+
$d P k $. $d S k $. $d k F $. $d k G $.
499250+
$( If a walk exists in a subgraph of a graph ` G ` , then that walk also
499251+
exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499252+
subgrwlk $p |- ( S SubGraph G ->
499253+
( F ( Walks ` S ) P -> F ( Walks ` G ) P ) ) $=
499254+
( vk wbr cwlks cfv ciedg wcel co wceq wss wral w3a wa cvv eqid syl wi cdm
499255+
csubgr cword cc0 chash cfz cvtx wf cv c1 caddc csn cpr wif cfzo wb subgrv
499256+
simpld iswlkg 3simpa cedg cpw subgrprop2 simp2d dmss sswrd 3syl sseld fss
499257+
simp1d expcom anim12d syl5 3simpb biidd cres subgrprop 3ad2ant1 wrdsymbcl
499258+
fveq1d fvresd 3adant1 eqtrd eqeq1d sseq2d ifpbi123d biimpd ralrimiv ralim
499259+
3expia expimpd jcad sylbid df-3an syl6ibr simpl2im sylibrd ) BDUBFZCABGHF
499260+
ZCDIHZUAZUCZJZUDCUEHZUFKZDUGHZAUHZEUIZAHZXHUJUKKAHZLZXHCHZWTHZXIULZLZXIXJ
499261+
UMZXMMZUNZEUDXDUOKZNZOZCADGHFZWRWSXCXGPZXTPZYAWRWSCBIHZUAZUCZJZXEBUGHZAUH
499262+
ZXKXLYEHZXNLZXPYKMZUNZEXSNZOZYDWRBQJZWSYPUPWRYQDQJZBDUQZURAECBYEYIQYIRZYE
499263+
RZUSSWRYPYCXTYPYHYJPWRYCYHYJYOUTWRYHXCYJXGWRYGXBCWRYEWTMZYFXAMYGXBMWRYIXF
499264+
MZUUBBVAHZYIVBMZXFWTBUUDDYEYIYTXFRZUUAWTRZUUDRZVCZVDYEWTVEYFXAVFVGVHWRUUC
499265+
YJXGTWRUUCUUBUUEUUIVJYJUUCXGXEYIXFAVIVKSVLVMYPYHYOPWRXTYHYJYOVNWRYHYOXTWR
499266+
YHPZYNXRTZEXSNYOXTTUUJUUKEXSWRYHXHXSJZUUKWRYHUULOZYNXRUUMXKYLYMXKXOXQUUMX
499267+
KVOUUMYKXMXNUUMYKXLWTYFVPZHZXMWRYHYKUUOLUULWRXLYEUUNWRUUCYEUUNLUUEXFWTBUU
499268+
DDYEYIYTUUFUUAUUGUUHVQVDVTVRYHUULUUOXMLWRYHUULPXLYFWTXHYFCVSWAWBWCZWDUUMY
499269+
KXMXPUUPWEWFWGWJWHYNXREXSWISWKVMWLWMXCXGXTWNWOWRYQYRYBYAUPYSAECDWTXFQUUFU
499270+
UGUSWPWQ $.
499271+
$}
499272+
499273+
$( If a trail exists in a subgraph of a graph ` G ` , then that trail also
499274+
exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499275+
subgrtrl $p |- ( S SubGraph G ->
499276+
( F ( Trails ` S ) P -> F ( Trails ` G ) P ) ) $=
499277+
( csubgr wbr cwlks cfv ccnv wfun wa ctrls subgrwlk anim1d istrl 3imtr4g ) B
499278+
DEFZCABGHFZCIJZKCADGHFZSKCABLHFCADLHFQRTSABCDMNACBOACDOP $.
499279+
499280+
$( If a path exists in a subgraph of a graph ` G ` , then that path also
499281+
exists in ` G ` . (Contributed by BTernaryTau, 22-Oct-2023.) $)
499282+
subgrpth $p |- ( S SubGraph G ->
499283+
( F ( Paths ` S ) P -> F ( Paths ` G ) P ) ) $=
499284+
( csubgr wbr ctrls cfv c1 chash cfzo co cres ccnv wfun cima w3a cpths ispth
499285+
idd cc0 cpr cin c0 wceq subgrtrl 3anim123d 3imtr4g ) BDEFZCABGHFZAICJHZKLZM
499286+
NOZAUAUKUBPAULPUCUDUEZQCADGHFZUMUNQCABRHFCADRHFUIUJUOUMUMUNUNABCDUFUIUMTUIU
499287+
NTUGACBSACDSUH $.
499288+
499289+
$( If a cycle exists in a subgraph of a graph ` G ` , then that cycle also
499290+
exists in ` G ` . (Contributed by BTernaryTau, 23-Oct-2023.) $)
499291+
subgrcycl $p |- ( S SubGraph G ->
499292+
( F ( Cycles ` S ) P -> F ( Cycles ` G ) P ) ) $=
499293+
( csubgr wbr cpths cfv cc0 chash wceq ccycls subgrpth anim1d iscycl 3imtr4g
499294+
wa ) BDEFZCABGHFZIAHCJHAHKZQCADGHFZTQCABLHFCADLHFRSUATABCDMNACBOACDOP $.
499295+
499248499296
${
499249499297
$d V a b c $. $d f G p a b c $.
499250499298
cusgr3cyclex.1 $e |- V = ( Vtx ` G ) $.
@@ -499602,6 +499650,19 @@ property of an acyclic graph (see also ~ acycgr0v ). (Contributed by
499602499650
NUMUPULURUPULMUMABCORUKUPURMULUKUPURABCPSTUAUSUNUPABCUBUCUHULUQUKABCUDUEUNU
499603499651
PUNUFUIUNUGUJ $.
499604499652

499653+
${
499654+
$d S f p $. $d f G p $.
499655+
$( The subgraph of an acyclic graph is also acyclic. (Contributed by
499656+
BTernaryTau, 23-Oct-2023.) $)
499657+
acycgrsubgr $p |- ( ( G e. AcyclicGraph /\ S SubGraph G ) ->
499658+
S e. AcyclicGraph ) $=
499659+
( vf vp csubgr wbr cacycgr wcel cv ccycls cfv c0 wne wa wex subgrcycl cvv
499660+
wn wb isacycgr anim1d 2eximdv con3d subgrv simpl2im simpld 3imtr4d impcom
499661+
syl ) ABEFZBGHZAGHZUJCIZDIZBJKFZUMLMZNZDOCOZRZUMUNAJKFZUPNZDOCOZRZUKULUJV
499662+
BURUJVAUQCDUJUTUOUPUNAUMBPUAUBUCUJAQHZBQHZUKUSSABUDZCBQDTUEUJVDULVCSUJVDV
499663+
EVFUFCAQDTUIUGUH $.
499664+
$}
499665+
499605499666
$( (End of BTernaryTau's mathbox.) $)
499606499667

499607499668

0 commit comments

Comments
 (0)