Skip to content

Commit 19cb374

Browse files
authored
Finish proof of aks (#4979)
* finish proof of aks * typo * suggestions
1 parent 4fe9018 commit 19cb374

File tree

1 file changed

+45
-0
lines changed

1 file changed

+45
-0
lines changed

set.mm

Lines changed: 45 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -692967,6 +692967,51 @@ fixed reference functional determined by this vector (corresponding to
692967692967
GQVNVKVACOVNVIURVJUTVNVHUQUOVGBUPKUGRVGBUSUHUASUIVMHUFTACGHUJUKEULFUL $.
692968692968
$}
692969692969

692970+
${
692971+
$d A a $. $d N a k q $. $d N k n p q $. $d R a k $. $d R k n p $.
692972+
$d a k ph q $. $d n p ph q $.
692973+
aks5.1 $e |- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x.
692974+
( 2 logb N ) ) ) $.
692975+
aks5.2 $e |- X = ( var1 ` ( Z/nZ ` N ) ) $.
692976+
aks5.3 $e |- S = ( Poly1 ` ( Z/nZ ` N ) ) $.
692977+
aks5.4 $e |- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) )
692978+
X ) ( -g ` S ) ( 1r ` S ) ) } ) $.
692979+
aks5.5 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
692980+
aks5.6 $e |- ( ph -> R e. NN ) $.
692981+
aks5.7 $e |- ( ph -> ( N gcd R ) = 1 ) $.
692982+
aks5.8 $e |- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) $.
692983+
aks5.9 $e |- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp `
692984+
S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ]
692985+
( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S )
692986+
( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) $.
692987+
aks5.10 $e |- ( ph -> A. a e. ( 1 ... A ) ( a gcd N ) = 1 ) $.
692988+
$( The AKS Primality test, given an integer ` N ` greater than or equal to
692989+
3, find a coprime ` R ` such that ` R ` is big enough. Then, if a bunch
692990+
of polynomial equalities in the residue ring hold then ` N ` is a prime
692991+
power. Currently depends on the axiom ~ ax-exfinfld , since we
692992+
currently do not have the existence of finite fields in the database.
692993+
(Contributed by metakunt, 16-Aug-2025.) $)
692994+
aks5 $p |- ( ph -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) $=
692995+
( vq vk cv cdvds wbr cexp co wceq cn wrex cprime wcel cbs chash codz cchr
692996+
wa cfv cfield simprl simplr ad2antrr prmnn syl cz cgcd c1 nnzd gcdcomd c3
692997+
w3a cuz eluzelz 3jca eqtrd simpr jca rpdvds syl2anc odzcl nnnn0d nnexpcld
692998+
syl3anc eqeltrd eqid simprr ad4antr simpllr eqbrtrd clogb clt cmin eqcomd
692999+
odzid oveq1d breqtrd czrh cplusg cmgp cmg cqg cec wral aks5lem8 exfinfldd
693000+
c2 cfz r19.29a uzuzle23 exprmfct ) AUAUCZGUDUEZGIUCEUCUFUGUHEUIUJIUKUJZUA
693001+
UKAXKUKULZUQZXLUQZUBUCZUMURUNURZXKXKCUOURZURZUFUGZUHZXQUPURZXKUHZUQZXMUBU
693002+
SXPXQUSULZUQZYEUQZBYCCDEXQFGHIJJYHXRYAUIYGYBYDUTZYHXKXTYHXNXKUIULZXPXNYFY
693003+
EAXNXLVAZVBZXKVCZVDZYHXTXPXTUIULZYFYEXPCUIULZXKVEULZXKCVFUGZVGUHZYOAYPXNX
693004+
LPVBZXPXKXPXNYJYKYMVDVHZXPYRCXKVFUGZVGXPXKCUUAXPCYTVHZVIXPCVEULZYQGVEULZV
693005+
KCGVFUGZVGUHZXLUQUUBVGUHXPUUDYQUUEUUCUUAXPGVJVLURULZUUEAUUHXNXLOVBVJGVMVD
693006+
ZVNXPUUGXLXPUUFGCVFUGZVGXPCGUUCUUIVIAUUJVGUHZXNXLQVBVOXOXLVPVQCXKGVRVSVOZ
693007+
XKCVTWCZVBWAWBWDYCWEXPYFYEVAYHYCXKUKYGYBYDWFZYLWDAYPXNXLYFYEPWGZAUUHXNXLY
693008+
FYEOWGYHYCXKGUDUUNXOXLYFYEWHWIAUUKXNXLYFYEQWGKAXFGWJUGXFUFUGGXSURWKUEXNXL
693009+
YFYERWGYHCYAVGWLUGZXRVGWLUGUDYHYPYQYSCUUPUDUEUUOYHXKYNVHXPYSYFYEUULVBXKCW
693010+
NWCYHYAXRVGWLYHXRYAYIWMWOWPAGHJUCZDWQURURZDWRURZUGDWSURWTURZUGDFXAUGZXBGH
693011+
UUTUGUURUUSUGUVAXBUHJVGBXGUGZXCXNXLYFYESWGAUUQGVFUGVGUHJUVBXCXNXLYFYETWGM
693012+
NLXDXPXKUBXTYKUUMXEXHAGXFVLURULZXLUAUKUJAUUHUVCOGXIVDGUAXJVDXH $.
693013+
$}
693014+
692970693015
$(
692971693016
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
692972693017
Permutation results

0 commit comments

Comments
 (0)