@@ -692967,6 +692967,51 @@ fixed reference functional determined by this vector (corresponding to
692967
692967
GQVNVKVACOVNVIURVJUTVNVHUQUOVGBUPKUGRVGBUSUHUASUIVMHUFTACGHUJUKEULFUL $.
692968
692968
$}
692969
692969
692970
+ ${
692971
+ $d A a $. $d N a k q $. $d N k n p q $. $d R a k $. $d R k n p $.
692972
+ $d a k ph q $. $d n p ph q $.
692973
+ aks5.1 $e |- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x.
692974
+ ( 2 logb N ) ) ) $.
692975
+ aks5.2 $e |- X = ( var1 ` ( Z/nZ ` N ) ) $.
692976
+ aks5.3 $e |- S = ( Poly1 ` ( Z/nZ ` N ) ) $.
692977
+ aks5.4 $e |- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) )
692978
+ X ) ( -g ` S ) ( 1r ` S ) ) } ) $.
692979
+ aks5.5 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
692980
+ aks5.6 $e |- ( ph -> R e. NN ) $.
692981
+ aks5.7 $e |- ( ph -> ( N gcd R ) = 1 ) $.
692982
+ aks5.8 $e |- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) $.
692983
+ aks5.9 $e |- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp `
692984
+ S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ]
692985
+ ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S )
692986
+ ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) $.
692987
+ aks5.10 $e |- ( ph -> A. a e. ( 1 ... A ) ( a gcd N ) = 1 ) $.
692988
+ $( The AKS Primality test, given an integer ` N ` greater than or equal to
692989
+ 3, find a coprime ` R ` such that ` R ` is big enough. Then, if a bunch
692990
+ of polynomial equalities in the residue ring hold then ` N ` is a prime
692991
+ power. Currently depends on the axiom ~ ax-exfinfld , since we
692992
+ currently do not have the existence of finite fields in the database.
692993
+ (Contributed by metakunt, 16-Aug-2025.) $)
692994
+ aks5 $p |- ( ph -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) $=
692995
+ ( vq vk cv cdvds wbr cexp co wceq cn wrex cprime wcel cbs chash codz cchr
692996
+ wa cfv cfield simprl simplr ad2antrr prmnn syl cz cgcd c1 nnzd gcdcomd c3
692997
+ w3a cuz eluzelz 3jca eqtrd simpr jca rpdvds syl2anc odzcl nnnn0d nnexpcld
692998
+ syl3anc eqeltrd eqid simprr ad4antr simpllr eqbrtrd clogb clt cmin eqcomd
692999
+ odzid oveq1d breqtrd czrh cplusg cmgp cmg cqg cec wral aks5lem8 exfinfldd
693000
+ c2 cfz r19.29a uzuzle23 exprmfct ) AUAUCZGUDUEZGIUCEUCUFUGUHEUIUJIUKUJZUA
693001
+ UKAXKUKULZUQZXLUQZUBUCZUMURUNURZXKXKCUOURZURZUFUGZUHZXQUPURZXKUHZUQZXMUBU
693002
+ SXPXQUSULZUQZYEUQZBYCCDEXQFGHIJJYHXRYAUIYGYBYDUTZYHXKXTYHXNXKUIULZXPXNYFY
693003
+ EAXNXLVAZVBZXKVCZVDZYHXTXPXTUIULZYFYEXPCUIULZXKVEULZXKCVFUGZVGUHZYOAYPXNX
693004
+ LPVBZXPXKXPXNYJYKYMVDVHZXPYRCXKVFUGZVGXPXKCUUAXPCYTVHZVIXPCVEULZYQGVEULZV
693005
+ KCGVFUGZVGUHZXLUQUUBVGUHXPUUDYQUUEUUCUUAXPGVJVLURULZUUEAUUHXNXLOVBVJGVMVD
693006
+ ZVNXPUUGXLXPUUFGCVFUGZVGXPCGUUCUUIVIAUUJVGUHZXNXLQVBVOXOXLVPVQCXKGVRVSVOZ
693007
+ XKCVTWCZVBWAWBWDYCWEXPYFYEVAYHYCXKUKYGYBYDWFZYLWDAYPXNXLYFYEPWGZAUUHXNXLY
693008
+ FYEOWGYHYCXKGUDUUNXOXLYFYEWHWIAUUKXNXLYFYEQWGKAXFGWJUGXFUFUGGXSURWKUEXNXL
693009
+ YFYERWGYHCYAVGWLUGZXRVGWLUGUDYHYPYQYSCUUPUDUEUUOYHXKYNVHXPYSYFYEUULVBXKCW
693010
+ NWCYHYAXRVGWLYHXRYAYIWMWOWPAGHJUCZDWQURURZDWRURZUGDWSURWTURZUGDFXAUGZXBGH
693011
+ UUTUGUURUUSUGUVAXBUHJVGBXGUGZXCXNXLYFYESWGAUUQGVFUGVGUHJUVBXCXNXLYFYETWGM
693012
+ NLXDXPXKUBXTYKUUMXEXHAGXFVLURULZXLUAUKUJAUUHUVCOGXIVDGUAXJVDXH $.
693013
+ $}
693014
+
692970
693015
$(
692971
693016
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
692972
693017
Permutation results
0 commit comments