@@ -165400,37 +165400,80 @@ left ideal which is also a right ideal (or a left ideal over the opposite
165400
165400
) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) ) $.
165401
165401
$}
165402
165402
165403
+ ${
165404
+ $d d x y z $.
165405
+ $( The ball function has universal domain. (Contributed by Jim Kingdon,
165406
+ 24-Sep-2025.) $)
165407
+ blfn $p |- ball Fn _V $=
165408
+ ( vd vx vz vy cvv cv cdm cxr co clt wbr crab cmpo cbl vex dmex xrex mpoex
165409
+ df-bl fnmpti ) AEBCAFZGZGZHBFDFUAICFJKDUCLZMNBCUCHUDUBUAAOPPQRBDCAST $.
165410
+ $}
165411
+
165412
+ ${
165413
+ $d D d x $.
165414
+ $( Getting a set by applying ` MetOpen ` . (Contributed by Jim Kingdon,
165415
+ 24-Sep-2025.) $)
165416
+ mopnset $p |- ( D e. V -> ( MetOpen ` D ) e. _V ) $=
165417
+ ( vd cbl cfv crn ctg cvv wcel wal cmopn wfn blfn vex funfvex funfni mp2an
165418
+ cv rnex tgvalex ax-mp ax-gen cxmet cuni df-mopn mptfvex mpan ) CRZDEZFZGE
165419
+ ZHIZCJABIAKEHIULCUJHIULUIDHLUHHIUIHIZMCNUMHUHDUHDOPQSUJHTUAUBCUCFUDUKAKHB
165420
+ CUEUFUG $.
165421
+ $}
165422
+
165423
+ ${
165424
+ $d x y z $.
165425
+ $( The standard topology on the complex numbers is a set. (Contributed by
165426
+ Jim Kingdon, 25-Sep-2025.) $)
165427
+ cntopex $p |- ( MetOpen ` ( abs o. - ) ) e. _V $=
165428
+ ( vx vy vz cabs cmin ccom cvv wcel cmopn cfv cc cv ccj cmul co csqrt cmpt
165429
+ df-abs cnex eqeltri mptex caddc wceq crio cmpo df-sub mpoex mopnset ax-mp
165430
+ coex ) DEFZGHUKIJGHDEDAKALZULMJNOPJZQGARAKUMSUATEABKKBLCLUBOULUCCKUDZUEGA
165431
+ BCUFABKKUNSSUGTUJUKGUHUI $.
165432
+ $}
165433
+
165403
165434
$c CCfld $.
165404
165435
165405
165436
$( Extend class notation with the field of complex numbers. $)
165406
165437
ccnfld $a class CCfld $.
165407
165438
165408
- $( The field of complex numbers. Other number fields and rings can be
165409
- constructed by applying the ` |``s ` restriction operator.
165439
+ ${
165440
+ $d x y $.
165441
+ $( The field of complex numbers. Other number fields and rings can be
165442
+ constructed by applying the ` |``s ` restriction operator.
165410
165443
165411
- The contract of this set is defined entirely by ~ cnfldex , ~ cnfldadd ,
165412
- ~ cnfldmul , ~ cnfldcj , and ~ cnfldbas .
165444
+ The contract of this set is defined entirely by ~ cnfldex , ~ cnfldadd ,
165445
+ ~ cnfldmul , ~ cnfldcj , ~ cnfldtset and ~ cnfldbas .
165413
165446
165414
- We may add additional members to this in the future.
165447
+ We may add additional members to this in the future.
165415
165448
165416
- At least for now, this structure does not include a topology, order, a
165417
- distance function, or function mapping metrics.
165449
+ At least for now, this structure does not include an order, a distance
165450
+ function, or function mapping metrics.
165418
165451
165419
- (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux,
165420
- 15-Dec-2017.) (New usage is discouraged.) $)
165421
- df-icnfld $a |- CCfld = ( { <. ( Base ` ndx ) , CC >. ,
165422
- <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u.
165423
- { <. ( *r ` ndx ) , * >. } ) $.
165452
+ (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry
165453
+ Arnoux, 15-Dec-2017.) (New usage is discouraged.) $)
165454
+ df-icnfld $a |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. ,
165455
+ <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. ,
165456
+ <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u.
165457
+ { <. ( *r ` ndx ) , * >. } ) u.
165458
+ { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. } ) $.
165459
+ $}
165424
165460
165425
- $( The field of complex numbers is a structure. (Contributed by Mario
165426
- Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165427
- cnfldstr $p |- CCfld Struct <. 1 , ; 1 3 >. $=
165428
- ( ccnfld c1 c3 cdc cop cstr wbr wtru c4 cc cmul ccj cvv df-icnfld wcel cnex
165429
- caddc a1i addex cz mulex wf cjf fex mp2an srngstrd cuz cfv cle 1nn0 decnncl
165430
- 4z 3nn nnzi 1nn 3nn0 4nn0 4re 9re ltleii declei eluz2 mpbir3an strext mptru
165431
- c9 4lt9 ) ABBCDZEFGHBIVHAHJQAKLMMMMNJMOZHPRQMOHSRKMOHUARLMOZHJJLUBVIVJUCPJJ
165432
- MLUDUERUFVHIUGUHOZHVKITOVHTOIVHUIGULVHBCUJUMUKUNBCIUOUPUQIVFURUSVGUTVAIVHVB
165433
- VCRVDVE $.
165461
+ ${
165462
+ $d x y $.
165463
+ $( The field of complex numbers is a structure. (Contributed by Mario
165464
+ Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165465
+ cnfldstr $p |- CCfld Struct <. 1 , ; 1 3 >. $=
165466
+ ( vx vy ccnfld c1 c3 cop cstr wbr wtru c9 cnx cfv cc cv ccj cvv wcel cnex
165467
+ co a1i cdc cbs cplusg caddc cmpo cmul ctp cstv csn cun cts cabs cmin ccom
165468
+ cmulr cmopn df-icnfld c4 eqid mpoex wf cjf fex mp2an srngstrd cntopex 9nn
165469
+ mptru tsetndx strle1g ax-mp 4lt9 strleun eqbrtri cuz cz cle 9nn0 1nn0 3nn
165470
+ nn0zi decnncl nnzi 1nn 3nn0 9re leidi declei eluz2 mpbir3an strext ) CDDE
165471
+ UAZFGHIDJWLCCDJFZGHICKUBLMFKUCLABMMANZBNZUDSZUEZFKUOLABMMWNWOUFSZUEZFUGKU
165472
+ HLOFUIUJZKUKLZULUMUNUPLZFUIZUJWMGABUQDURJJWTXCWTDURFGHIMWQWTWSOPPPPWTUSMP
165473
+ QZIRTWQPQIABMMWPRRUTTWSPQIABMMWRRRUTTOPQZIMMOVAXDXEVBRMMPOVCVDTVEVHXBPQXC
165474
+ JJFGHVFXAJPXBVGVIVJVKVLVMVNTWLJVOLQZIXFJVPQWLVPQJWLVQHJVRWAWLDEVSVTWBWCDE
165475
+ JWDWEVRJWFWGWHJWLWIWJTWKVH $.
165476
+ $}
165434
165477
165435
165478
$( The field of complex numbers is a set. (Contributed by Stefan O'Rear,
165436
165479
27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by
@@ -165439,60 +165482,94 @@ left ideal which is also a right ideal (or a left ideal over the opposite
165439
165482
( ccnfld c1 c3 cdc cop cstr wbr cvv wcel cnfldstr structex ax-mp ) ABBCDEZF
165440
165483
GAHIJAMKL $.
165441
165484
165442
- $( The base set of the field of complex numbers. (Contributed by Stefan
165443
- O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised
165444
- by Thierry Arnoux, 17-Dec-2017.) $)
165445
- cnfldbas $p |- CC = ( Base ` CCfld ) $=
165446
- ( cc cvv wcel ccnfld cbs cfv wceq cnex c1 cdc cop cnfldstr baseslid cnx csn
165447
- c3 cplusg caddc cmulr cmul ctp snsstp1 cstv ccj cun ssun1 df-icnfld strslfv
165448
- sseqtrri sstri ax-mp ) ABCADEFGHADEBIIPJKLMNEFAKZOULNQFRKZNSFTKZUAZDULUMUNU
165449
- BUOUONUCFUDKOZUEDUOUPUFUGUIUJUHUK $.
165450
-
165451
- $( The addition operation of the field of complex numbers. (Contributed by
165452
- Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.)
165453
- (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165454
- cnfldadd $p |- + = ( +g ` CCfld ) $=
165455
- ( caddc cvv wcel ccnfld cplusg cfv wceq addex c1 cdc cop cnfldstr plusgslid
165456
- c3 cnx csn cbs cc cmulr cmul ctp snsstp2 cstv ccj cun ssun1 df-icnfld sstri
165457
- sseqtrri strslfv ax-mp ) ABCADEFGHADEBIINJKLMOEFAKZPOQFRKZULOSFTKZUAZDUMULU
165458
- NUBUOUOOUCFUDKPZUEDUOUPUFUGUIUHUJUK $.
165485
+ ${
165486
+ $d x y $.
165487
+ $( The base set of the field of complex numbers. (Contributed by Stefan
165488
+ O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.)
165489
+ (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165490
+ cnfldbas $p |- CC = ( Base ` CCfld ) $=
165491
+ ( vx vy cc cvv wcel ccnfld cbs cfv wceq cnex c1 cop cnx csn cv cmpo ssun1
165492
+ co cun sstri c3 cdc cnfldstr baseslid cplusg caddc cmulr cmul ctp snsstp1
165493
+ cstv ccj cts cabs cmin ccom cmopn df-icnfld sseqtrri strslfv ax-mp ) CDEC
165494
+ FGHIJCFGDKKUAUBLUCUDMGHCLZNVBMUEHABCCAOZBOZUFRPLZMUGHABCCVCVDUHRPLZUIZFVB
165495
+ VEVFUJVGVGMUKHULLNZSZMUMHUNUOUPUQHLNZSZFVGVIVKVGVHQVIVJQTABURUSTUTVA $.
165496
+ $}
165459
165497
165460
165498
${
165461
165499
$d x y $.
165462
165500
$( The addition operation of the field of complex numbers. Version of
165463
- ~ cnfldadd using maps-to notation. (Contributed by GG, 31-Mar-2025.) $)
165501
+ ~ cnfldadd using maps-to notation, which does not require ~ ax-addf .
165502
+ (Contributed by GG, 31-Mar-2025.) $)
165464
165503
mpocnfldadd $p |- ( x e. CC , y e. CC |-> ( x + y ) ) = ( +g ` CCfld ) $=
165465
- ( caddc cc cv cmpo ccnfld cplusg cfv cxp wfn wceq ax-addf ffn fnovim mp2b
165466
- co wf cnfldadd eqtr3i ) CABDDAEBECQFZGHIDDJZDCRCUBKCUALMUBDCNABDDCOPST $.
165504
+ ( cc cv caddc co cmpo cvv wcel ccnfld cplusg cfv c1 cop cnx csn cun ssun1
165505
+ cnex sstri wceq mpoex c3 cdc cnfldstr plusgslid cbs cmul ctp snsstp2 cstv
165506
+ cmulr ccj cts cabs cmin ccom cmopn df-icnfld sseqtrri strslfv ax-mp ) ABC
165507
+ CADZBDZEFZGZHIVFJKLUAABCCVESSUBVFJKHMMUCUDNUEUFOKLVFNZPOUGLCNZVGOULLABCCV
165508
+ CVDUHFGNZUIZJVHVGVIUJVJVJOUKLUMNPZQZJVJVKRVLVLOUNLUOUPUQURLNPZQJVLVMRABUS
165509
+ UTTTVAVB $.
165510
+ $( $j usage 'mpocnfldadd' avoids 'ax-addf' 'ax-mulf'; $)
165511
+
165512
+ $( The addition operation of the field of complex numbers. (Contributed by
165513
+ Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.)
165514
+ (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG,
165515
+ 27-Apr-2025.) $)
165516
+ cnfldadd $p |- + = ( +g ` CCfld ) $=
165517
+ ( vx vy caddc cc cv co cmpo ccnfld cplusg cfv cxp wf wfn wceq ax-addf ffn
165518
+ fnovim mp2b mpocnfldadd eqtri ) CABDDAEBECFGZHIJDDKZDCLCUBMCUANOUBDCPABDD
165519
+ CQRABST $.
165467
165520
$}
165468
165521
165469
- $( The multiplication operation of the field of complex numbers.
165470
- (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro,
165471
- 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165472
- cnfldmul $p |- x. = ( .r ` CCfld ) $=
165473
- ( cmul cvv wcel ccnfld cmulr cfv wceq mulex c1 c3 cdc cop cnfldstr mulrslid
165474
- cnx csn cbs cc cplusg caddc ctp snsstp3 cstv ssun1 df-icnfld sseqtrri sstri
165475
- ccj cun strslfv ax-mp ) ABCADEFGHADEBIIJKLMNOEFALZPOQFRLZOSFTLZULUAZDUMUNUL
165476
- UBUOUOOUCFUHLPZUIDUOUPUDUEUFUGUJUK $.
165477
-
165478
165522
${
165479
165523
$d x y $.
165480
165524
$( The multiplication operation of the field of complex numbers. Version
165481
- of ~ cnfldmul using maps-to notation. (Contributed by GG,
165482
- 31-Mar-2025.) $)
165525
+ of ~ cnfldmul using maps-to notation, which does not require ~ ax-mulf .
165526
+ (Contributed by GG, 31-Mar-2025.) $)
165483
165527
mpocnfldmul $p |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) $=
165484
- ( cmul cc cv co cmpo ccnfld cmulr cfv cxp wf wfn wceq ax-mulf fnovim mp2b
165485
- ffn cnfldmul eqtr3i ) CABDDAEBECFGZHIJDDKZDCLCUBMCUANOUBDCRABDDCPQST $.
165528
+ ( cc cv cmul co cmpo cvv wcel ccnfld cmulr cfv cnex cop cnx csn cun ssun1
165529
+ c1 sstri wceq mpoex c3 cdc cnfldstr mulrslid cbs cplusg caddc ctp snsstp3
165530
+ cstv ccj cts cabs cmin ccom cmopn df-icnfld sseqtrri strslfv ax-mp ) ABCC
165531
+ ADZBDZEFZGZHIVFJKLUAABCCVEMMUBVFJKHSSUCUDNUEUFOKLVFNZPOUGLCNZOUHLABCCVCVD
165532
+ UIFGNZVGUJZJVHVIVGUKVJVJOULLUMNPZQZJVJVKRVLVLOUNLUOUPUQURLNPZQJVLVMRABUSU
165533
+ TTTVAVB $.
165534
+ $( $j usage 'mpocnfldmul' avoids 'ax-addf' 'ax-mulf'; $)
165535
+
165536
+ $( The multiplication operation of the field of complex numbers.
165537
+ (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario
165538
+ Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
165539
+ (Revised by GG, 27-Apr-2025.) $)
165540
+ cnfldmul $p |- x. = ( .r ` CCfld ) $=
165541
+ ( vx vy cmul cc cv co cmpo ccnfld cmulr cfv cxp wf wfn ax-mulf ffn fnovim
165542
+ wceq mp2b mpocnfldmul eqtri ) CABDDAEBECFGZHIJDDKZDCLCUBMCUAQNUBDCOABDDCP
165543
+ RABST $.
165486
165544
$}
165487
165545
165488
- $( The conjugation operation of the field of complex numbers. (Contributed
165489
- by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
165490
- (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165491
- cnfldcj $p |- * = ( *r ` CCfld ) $=
165492
- ( ccj cvv wcel ccnfld cstv cfv wceq cc wf cjf cnex fex mp2an c1 c3 cnfldstr
165493
- cdc cop starvslid cnx csn cbs cplusg caddc cmulr ctp cun df-icnfld sseqtrri
165494
- cmul ssun2 strslfv ax-mp ) ABCZADEFGHHAIHBCUNJKHHBALMADEBNNOQRPSTEFARUAZTUB
165495
- FHRTUCFUDRTUEFUJRUFZUOUGDUOUPUKUHUIULUM $.
165546
+ ${
165547
+ $d x y $.
165548
+ $( The conjugation operation of the field of complex numbers. (Contributed
165549
+ by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux,
165550
+ 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) $)
165551
+ cnfldcj $p |- * = ( *r ` CCfld ) $=
165552
+ ( vx vy ccj cvv wcel ccnfld cstv cfv wceq cc wf cjf c1 cop cnx cv co cmpo
165553
+ csn cun cnex fex mp2an cdc cnfldstr starvslid cbs cplusg caddc cmulr cmul
165554
+ ctp ssun2 cts cabs cmin ccom cmopn ssun1 df-icnfld sseqtrri sstri strslfv
165555
+ c3 ax-mp ) CDEZCFGHIJJCKJDEVFLUAJJDCUBUCCFGDMMVDUDNUEUFOGHCNSZOUGHJNOUHHA
165556
+ BJJAPZBPZUIQRNOUJHABJJVHVIUKQRNULZVGTZFVGVJUMVKVKOUNHUOUPUQURHNSZTFVKVLUS
165557
+ ABUTVAVBVCVE $.
165558
+ $}
165559
+
165560
+ ${
165561
+ $d u v $.
165562
+ $( The topology component of the field of complex numbers. (Contributed by
165563
+ Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.)
165564
+ (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG,
165565
+ 31-Mar-2025.) $)
165566
+ cnfldtset $p |- ( MetOpen ` ( abs o. - ) ) = ( TopSet ` CCfld ) $=
165567
+ ( vu vv cabs cmin ccom cmopn cfv cvv wcel ccnfld cts c1 cop cnx csn cc cv
165568
+ co cmpo cun wceq cntopex c3 cdc cnfldstr tsetslid cplusg caddc cmulr cmul
165569
+ cbs ctp cstv ccj ssun2 df-icnfld sseqtrri strslfv ax-mp ) CDEFGZHIUTJKGUA
165570
+ UBUTJKHLLUCUDMUEUFNKGUTMOZNUKGPMNUGGABPPAQZBQZUHRSMNUIGABPPVBVCUJRSMULNUM
165571
+ GUNMOTZVATJVAVDUOABUPUQURUS $.
165572
+ $}
165496
165573
165497
165574
${
165498
165575
$d x y z A $. $d x y B $.
@@ -172416,7 +172493,9 @@ the base set to the (extended) reals and which is nonnegative, symmetric
172416
172493
172417
172494
${
172418
172495
$d D r x y $. $d X r x y $.
172419
- $( A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.) $)
172496
+ $( A ball is a set. Also see ~ blfn in case you just know ` D ` is a set,
172497
+ not ` D e. ( *Met `` X ) ` . (Contributed by Jim Kingdon,
172498
+ 4-May-2023.) $)
172420
172499
blex $p |- ( D e. ( *Met ` X ) -> ( ball ` D ) e. _V ) $=
172421
172500
( vx vr vy cxmet cfv wcel cbl cxr cv co clt wbr crab cmpo cvv blfval wrel
172422
172501
cdm xmetrel relelfvdm mpan xrex mpoexga sylancl eqeltrd ) ABFGHZAIGCDBJCK
0 commit comments